Interaction of the Mortar Flow with of a Mortar Pump’s Valve Ball

  • Authors

    • Roman Kaczynski
    • Bogdan Korobko
    • Ievgen Vasyliev
    • Anton Kivshyk
    2018-10-13
    https://doi.org/10.14419/ijet.v7i4.8.27258
  • hydrodynamic pressure, mortar, mortar pump, rheology, working chamber.
  • The article deals with the process of interaction of the valve ball of a mortar pump with the mortar flow. The schemes of the working chamber with attached forces to its elements are drawn up. The hydrodynamic pressure is determined in the analytical form and as the results of the experiment. The structural parameters of the working chamber and the rheological parameters of the mortar are analyzed, which have the greatest influence on the magnitude of the hydrodynamic force.

     

     

  • References

    1. [1] Kiyanets AV,â€Using Mortar Mixing Pump for Magnesia Mortars Preparing and Transportingâ€, IOP Conference Series: Materials Science and Engineering, (2017), p. 262, 012067. doi:10.1088/1757-899x/262/1/012067

      [2] Wang G, Kiamehr K, Song L,â€Development of a virtual pump water flow meter with a flow rate function of motor power and pump headâ€, Energy and Buildings, vol. 117, (2016), pp: 63–70. doi:10.1016/j.enbuild.2016.02.003

      [3] Korobko B, Zadvorkin D, Vasyliev I,â€Energy Efficiency of a Hydraulically Actuated Plastering Machineâ€, International Journal of Engineering & Technology, vol. 7(3.2), (2018), pp: 203–208. doi:10.14419/ijet.v7i3.2.14403

      [4] Korobko B, Zadvorkin D, Vasyliev Ie,â€Study of the operating element motion law for a hydraulic-driven diaphragm mortar pumpâ€, Eastern-European Journal of Enterprise Technologies, vol. 4/7 (88), (2017), pp: 25–31. doi: 10.15587/1729-4061.2017.106873.

      [5] Wang GL, Ma ML, Miao DM, Ma HJ,â€Pump Ability of Concrete Mixture Improvement Based on Rich Mortar Theory Testing Methodâ€, Applied Mechanics and Materials, vol. 472, (2014), pp: 704–707. doi:10.4028/www.scientific.net/amm.472.704

      [6] Chidiac SE, Mahmoodzadeh F,â€Constitutive flow models for characterizing the rheology of fresh mortar and concreteâ€, Canadian Journal of Civil Engineering, vol. 40(5), (2013), pp: 475–482. doi:10.1139/l2012-025

      [7] Zhang QQ, Liu JZ, Liu JP,â€Influence of Ground Slag on the Rheology of Mortarâ€, Applied Mechanics and Materials, vol. 438–439, (2013), pp: 67–71. doi:10.4028/www.scientific.net/amm.438-439.67

      [8] Rao VV, Parameshwaran R, Ram VV,. â€PCM-mortar based construction materials for energy efficient buildings: A review on research trendsâ€, Energy and Buildings, vol. 158, (2018), pp: 95–122. doi:10.1016/j.enbuild.2017.09.098

      [9] Giaretton M, Dizhur D, Garbin E, Ingham JM, da Porto F,â€In-Plane Strengthening of Clay Brick and Block Masonry Walls Using Textile-Reinforced Mortarâ€, Journal of Composites for Construction, vol. 22(5), (2018), 04018028. doi:10.1061/(asce)cc.1943-5614.0000866

      [10] Bauret S, Rivard P, â€Experimental Assessment of the Tensile Bond Strength of Mortar-Mortar Interfaces: Effects of Interface Roughness and Mortar Strengthâ€, Geotechnical Testing Journal, vol. 41(6), (2018), 20170173. doi:10.1520/gtj20170173

      [11] Peng JW, Deng DH, Yuan Q, Fang L, Wang Y, â€Effect of Fine Sand on the Rheology of Fresh Cement Asphalt Mortarâ€, Advanced Materials Research, vol. 1049-1050, (2014), pp: 285–293. doi:10.4028/www.scientific.net/amr.1049-1050.285

      [12] Nivethitha D, Srividhya S, Dharmar S, â€Review on Mechanical Properties of Cement Mortar Enhanced with Nanoparticlesâ€, International Journal of Science and Research (IJSR), vol. 5(1), (2016), pp: 913–916. doi:10.21275/v5i1.nov152794

      [13] Korobko B, Vasyliev I,â€Test Method for Rheological Behavior of Mortar for Building Workâ€, Acta Mechanica et Automatica, vol. 11(3), (2017), pp: 173–177. doi:10.1515/ama-2017-0025

      [14] Song Y, Zheng Q,â€Linear rheology of nanofilled polymersâ€, Journal of Rheology, vol. 59(1), (2015), pp: 155–191. doi:10.1122/1.4903312

      [15] Widodo TH, Chandra L, Antoni & Hardjito D,â€Rheology of High Volume Sidoarjo Mud Mortarâ€, Materials Science Forum, vol. 803, (2014), pp: 160–165. doi:10.4028/www.scientific.net/msf.803.160

      [16] Narayanan A, Shanmugasundaram P,â€An Experimental Investigation on Flyash-based Geopolymer Mortar under different curing regime for Thermal Analysisâ€, Energy and Buildings, vol. 138, (2017), pp: 539–545. doi:10.1016/j.enbuild.2016.12.079

      [17] Cui H, Liao W, Mi X, Lo TY, Chen D,â€Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materialsâ€, Energy and Buildings, vol. 105, (2015), pp: 273–284. doi:10.1016/j.enbuild.2015.07.043

      [18] Han D, Kim JH, Lee JH, Kang S-T,â€Critical Grain Size of Fine Aggregates in the View of the Rheology of Mortarâ€, International Journal of Concrete Structures and Materials, vol. 11(4), (2017), pp: 627–635. doi:10.1007/s40069-017-0217-4

      [19] Meng W, Khayat KH, â€Improving flexural performance of ultra-high-performance concrete by rheology control of suspending mortarâ€, Composites Part B: Engineering, vol. 117, (2017), pp: 26–34. doi:10.1016/j.compositesb.2017.02.019

      [20] Chu HCW, Zia RN, â€The non-Newtonian rheology of hydrodynamically interacting colloids via active, nonlinear microrheologyâ€, Journal of Rheology, vol. 61(3), (2017), pp: 551–574. doi:10.1122/1.4981819

      [21] Rashad AM,â€An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concreteâ€, Construction and Building Materials, vol. 187, (2018), pp: 89–117. doi:10.1016/j.conbuildmat.2018.07.150

      [22] Cao M, Xu L, Zhang Câ€Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO 3 ) whisker reinforced cement mortarâ€, Composites Part A: Applied Science and Manufacturing, vol. 90, (2016), pp: 662–669. doi:10.1016/j.compositesa.2016.08.033

  • Downloads

  • How to Cite

    Kaczynski, R., Korobko, B., Vasyliev, I., & Kivshyk, A. (2018). Interaction of the Mortar Flow with of a Mortar Pump’s Valve Ball. International Journal of Engineering & Technology, 7(4.8), 289-294. https://doi.org/10.14419/ijet.v7i4.8.27258