Peculiarities of Chemical Interaction and Phase Setting in Water-Salt Systems of Nitrates of Cesium, Strontium and Neodymium

  • Authors

    • Dmytro Storozhenko
    • Oleksandr Dryuchko
    • Natalia Bunyakìna
    • Iryna Ivanitcka
    2018-10-13
    https://doi.org/10.14419/ijet.v7i4.8.27296
  • cesium, complex formation, neodymium, nitrates, properties, strontium, water-salt systems.
  • Abstract

    The complex study provides a reliable idea of the trends in the joint behavior of structural components in water and salt systems of nitrate precursors of neodymium, cesium, strontium in the preparatory stages of technological regulations for the concentration and immobilization of liquid radioactive waste of the nuclear power industry complex using schemes of porous and layered matrix fixators of 137Cs, 90Sr  radionuclides and thermal activation. Stages of such transformations are revealed; The regularities of complex and phase formation in systems and factors influencing them are determined; A number of physicochemical properties of the intermediate phases formed - the coordination neodymium nitrates: their composition, types of compounds, atomic-crystalline structure, forms of coordination polynuclears Ln, types of coordination of ligands, features and regularities of behavior in the processes of heat treatment were studied. It is established that in the conditions of existence of solutions, the system CsNO3 – Nd(NO3)3 – H2O is characterized by the formation of 2 anionic complex compounds Ln3+, Sr(no3)2 – nd(no3)3 – h2o - eutonic type. Leaking competing reactions are a powerful technological factor that significantly affects the activity of the structural forms of Ln3+. The systematized information allows us to find out the mechanisms, the kinetics of transformations of structural components in similar objects, and enable us to transfer the acquired knowledge system to the plane of promising technological solutions for the solidification of liquid radioactive waste.

     

     

  • References

    1. [1] Babain, V. A. Ispol'zovanie UNEX-processa dlya pererabotki othodov s visokim soderzhaniem redkozemel'nyh ehlementov [Use of the UNEX-process for recycling waste with a high content of rare-earth elements] / V. A. Babain, I. V. Smirnov, M. Yu. Alyapyshev [et al.] // Radiation safety issues , (2006), No. 3, pp. 3–12.

      [2] Logunov, M. V. Razrabotka i opytno-tekhnologicheskie ispytaniya kompleksnoj ehkstrakcionno-osaditel'noj tekhnologii frakcionirovaniya zhidkih vysokoaktivnyh othodov na FGUP «PO «Mayak» [Development and experimental-technological tests of complex extraction-precipitation technology of fractionation of liquid high-level waste at the FSUE “PA Mayak†] / M. V. Logunov, E. G. Dzekun, A. S. Skobtsov [ et al.] // Radiation safety issues. (2008), No. 4, pp. 3–15.

      [3] Salvatores, M. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges / M. Salvatores, G. Palmiotti // Prog. Part. Nucl. Phys. , (2011), Vol. 66, No.1, pp. 144–166.

      [4] Zilberman, B.Ya. Dibutyl phosphoric acid and its acidic zirconium salt as an extractant for the separation of transplutonium elements and rare earths and for their partitioning / B. Ya. Zilberman, Yu. S. Fedorov, O. V. Schmidt [et al.] // J. Radioanal. Nucl. Ch., (2009), Vol. 279, No. 1, pp. 193–208.

      [5] Nishihara, K. Impact of partitioning and transmutation on LWR high-level waste disposal / K. Nishihara, S. Nakayama, Y. Morita [et al.] // J. Nucl. Sci. Technol. (2008), Vol. 45, No. 1, pp. 84–97.

      [6] Forsberg, C. W. Rethinking high-level waste disposal: Separate disposal of high-heat radionuclides / C. W. Forsberg // Nucl. Technol. (2000), Vol. 131, No. 2, pp. 252–268.

      [7] Del Cul, G. D. Citrate-based ―talspeak‖ actinide-lanthanide process / G. D. Del Cul, L.M. Toth, W. D. Bond [et al.] // Separ. Sci. Technol. (1997), Vol. 32, No. 1–4, pp. 431– 446.

      [8] Mathur, J. M. Actinides partitioning – a review / J. M. Mathur, M. S. Murali, K. L. Nash // Solvent Extr. Ion Exc. (2001), Vol. 19, No. 3, pp. 357–390.

      [9] Paiva, A. P. Recent advances on the chemistry of solvent extraction applied to the reprocessing of spent nuclear fuels and radioactive wastes / A. P. Paiva, P. Malik // J. Radioanal. Nucl. Ch. (2004), Vol. 261, No. 2, pp. 485–496.

      [10] Romanovsky, V.N. EHkstrakcionnoe vydelenie dolgozhivushchih radionuklidov iz VAO. CH. I [Extraction isolation of long-lived radionuclides from HLW. Part I] / V.N. Romanovsky, A. Yu. Shadrin, B. Ya. Zilberman [et al.] // Radiation safety issues, (2004), Vol. 33, No. 1, pp. 3–19.

      [11] Romanovsky V.N. Extraction isolation of long-lived radionuclides from HLW. Part II [Extraction isolation of long-lived radionuclides from HLW. Part II] / V.N. Romanovsky, A.Yu. Shadrin, B.Ya. Zilberman [and others] // Radiation safety issues, (2004), Vol. 34, No. 2, pp. 5–14.

      [12] Pat. 2165110 Russian Federation, IPC G 21 F 9/04, G 21 F 9/16, C04B38 / 00. Keramicheskaya gubka dlya koncentrirovaniya i otverzhdeniya zhidkih osoboopasnyh othodov i sposob ee polucheniya [Ceramic sponge for the concentration and solidification of liquid highly hazardous waste and the method of its production] / Anshits A.G., Vereshchagina T.A., Pavlov V.F. [et al.]; applicant and patentee Anshits A.G. - â„– 99109609/06; declare 04/28/1999; publ. 10.04.2001, Byul., No. 10, 8 p.

      [13] Merkushkin, AO. Poluchenie himicheski ustojchivyh matric dlya immobilizacii aktinoidnoj frakcii VAO [Preparation of chemically stable matrices for immobilization of the HLA actinoid fraction]: dis. ... Cand. chemical Sciences: 05.17.02 / Merkushkin Aleksey Olegovich. - M., (2003), 198 p.

      [14] Pat. 2355057 Russian Federation, IPC G 21 F 9/04 (2006.1). Sposob ehkstrakcionnoj pererabotki vysokoaktivnyh othodov (VAO) s frakcionirovaniem radionuklidov [Method of extraction processing of high level waste (HLW) with fractionation of radionuclides] / Gavrilov PM, Revenko Yu. M., Bondin V.V. [et al.]; applicant and patent holder Federal State Unitary Enterprise "Mining and Chemical Combine". - â„– 2007134202/06; declare September 13, 2007; publ. 05/10/2009, Byul., No. 13.

      [15] Trachenko, K. Topical Review. Understanding resistance to amorphization by radiation damage / K. Trachenko // J. Phys.- Condens. Mat., (2004), Vol. 16, pp. 1491–1515.

      [16] Anosov V.Ya. Osnovy fiziko-khimicheskogo analiza [Basics of Physical and Chemical Analysis] / V.Ya. Anosov, М.I. Ozerova, Yu.Ya .Fialkov. – М.: Nauka, Publisher, (1976), 503 p.

      [17] Goroshchenko Ya. G. Fiziko-khimicheskiy analiz gomogennykh I geterogennykh system [Physical and Chemical Analysis of homogenous and heterogenous systems] / Ya. G. Goroshchenko. – K.:Naukova dumka, Publisher,(1978), 490 p.

      [18] Vigdorchik A.G., Malinovskij Ju.A., Drjuchko A.G. Poluchenie i kristallicheskaja struktura Cs2[Nd(NO3)5(H2O)2] [Preparation and crystalline structure of Cs2[Nd(NO3)5(H2O)2]]. Crystallography. (1989), Vol. 34, No. 2, pp. 292-296.

      [19] Vigdorchik A.G., Malinovskij Ju.A., Drjuchko A.G. Poluchenie i kristallicheskaja struktura Cs[Nd(NO3)4(H2O)3] [Preparation and crystalline structure of Cs[Nd(NO3)4(H2O)3]]. Journal of structural chemistry. (1989), Vol. 30, No. 5, pp. 175-179.

      [20] Kudrenko E.O., Shmyt'ko Y.M., Strukova H.K. Struktura prekursorov slozhnykh oksydov RZЭ, poluchennykh metodom termolyza rastvorytelya [Structure of the precursors of the complex oxides rare-earth elements, obtained by the method of the thermolysis of the solvent]. Fyzyka tverdoho tela. (2008), Vol. 50, No. 5, pp. 924–930.

      [21] Pat. 2440292 S 2 RU, C 01 B 3/18 Sposob poluchenija perovskitov [Method for obtaining perovskites]. Yakovleva I.S., Isupova L.A. (RU); application 2009149781/05; claimed. 31.12.2009; publ. 20.01.2012. Bul., No. 2, 19 p.

      [22] Varma A., Mukasyan A.S., Rogachev A.S. et al. Solution Combustion Synthesis of Nanoscale Materials. American Chemical Society. Chem. Rev. (2016), Vol. 116, pp. 14493-14586.

      [23] Schaak R.E., Mallouk T.E. Perovskites by Design: A Toolbox of Solid-State Reactions. Chemistry of Materials. (2002), Vol. 14, No. 4, pp. 1455-1471.

      [24] Loburets, A. T., Naumovets, A. G., Senenko, N. B., & Vedula, Y. S. (1997). Surface diffusion and phase transitions in strontium overlayers on W(112). Zeitschrift Fur Physikalische Chemie, 202(1-2), 75-85.

      [25] Popova, A. V., Kremenetsky, V. G., Solov'ev, V. V., Chernenko, L. A., Kremenetskaya, O. V., Fofanov, A. D., & Kuznetsov, S. A. (2010). Standard rate constants of charge transfer for nb(V)/Nb(IV) redox couple in chloride-fluoride melts: Experimental and calculation methods. Russian Journal of Electrochemistry, 46(6), 671-679. https://doi.org/10.1134/S1023193510060121

  • Downloads

  • How to Cite

    Storozhenko, D., Dryuchko, O., Bunyakìna, N., & Ivanitcka, I. (2018). Peculiarities of Chemical Interaction and Phase Setting in Water-Salt Systems of Nitrates of Cesium, Strontium and Neodymium. International Journal of Engineering & Technology, 7(4.8), 502-508. https://doi.org/10.14419/ijet.v7i4.8.27296

    Received date: 2019-02-11

    Accepted date: 2019-02-11

    Published date: 2018-10-13