Geometric and Computer Modeling of Building Structures Forms
-
2018-10-13 https://doi.org/10.14419/ijet.v7i4.8.27306 -
discrete modeling, geometric images, finite difference method, static-geometric method, geometric apparatus of superpositions, hyperbolic functions, chain line. -
Abstract
The current state of designing curvilinear objects of architecture and construction needs to take into account as many data and requirements as possible to ensure an appropriate model accuracy. In geometric modeling initial data, as a rule, are geometric characteristics and conditions, which are represented in numerical form (coordinates or values of parameters) with quite big arrays. In these conditions, methods of global continuous modeling with a single solution become ineffective. Because of this they require a usage of rather complicated mathematical algorithms and can not provide a necessary adequacy of models. Methods of discrete geometric modeling are free from these drawbacks.
The purpose of this article is expanding possibilities of the classical finite difference method and the static-geometric method by applying a geometric apparatus of superposition. In discrete modeling of geometric images this allows using hyperbolic functions as interpolators.
The result of this study is a computational template for continuous two-dimensional discrete interpolation. This allows to model geometric images of architectural and building constructions in the form of discrete frames of chain lines.
Â
Â
 -
References
[1] Samostyan V.R. Vplyv heometrychnykh vymoh na protsesy dyskretnoho modelyuvannya kryvoliniynykh obʺyektiv budivnytstva: dys. …kand. tekhn. nauk: 05.01.01 / V.R. Samostyan. – K., 2011. – 182 s.
[2] Guoliang Xu, Oing Pan, Chandrajit L. Bajaj. Discrete surface modeling using partial differential equations. Computer Aided Geometric Design. Volume 23, Issue 2, February 2006, pp. 125-145, https://doi.org/10.1016/j.cagd.2005.05.004
[3] Lienhardt P. (1997) Aspects in topology-based geometric modeling Possible tools for discrete geometry?. In: Ahronovitz E., Fiorio C. (eds) Discrete Geometry for Computer Imagery. DGCI 1997. Lecture Notes in Computer Science, vol 1347. Springer, Berlin, Heidelberg pp 33-48. https://doi.org/10.1007/BFb0024828
[4] Kovalev S.N. Formirovaniye diskretnykh modeley poverkhnostey prostranstvennykh arkhitekturnykh konstruktsiy: dis. … doktora tekhn. nauk: 05.01.01 / S.N. Kovalev − M.: MAI, 1986. – 348 s.
[5] Naydysh, V.M. Teoretycheskye osnovy dyskretnoho heometrycheskoho modelyrovanyya. / V.M. Naydysh // Prykladna heometriya ta inzhenerna hrafika. – K.: KNUBA, 1995. – Vyp. 58. – S. 26 – 29.
[6] Pustyulʹha, S.I. Dyskretne vyznachennya heometrychnykh obʺyektiv chyslovymy poslidovnostyamy: dys. … doktora tekhn. nauk: 05.01.01 / S.I. Pustyulʹha. – K., 2006. – 322 s.
[7] Kovalev S.N. O superpozytsyyakh / S.N. Kovalev // Prykladna heometriya ta inzhenerna hrafika: zb. nauk. pratsʹ. – K.: KNUBA, 2010. − Vyp. 84. – S. 38 – 42. . ISSN 0131-579X
[8] Vorontsov O. Discrete modeling of building structures geometric images. / O. Vorontsov, L. Tulupova, O. Vorontsova // International Journal of Engineering & Technology. Vol. 7 No. 3.2 (2018). P. 727 – 731. ISSN: 2227-524X
[9] Vorontsov O. Recurrence formulae of a catenary in creation of geometric images. / O. Vorontsov., L. Tulupova // Oxford Journal of Scientific research No. 1. (9), January-June, 2015, Volume IV. P. 134 – 140. . ISSN 0305-4882.
[10] Vorontsov O.V. Vyznachennya dyskretnoho analohu polinoma n-ho stepenya superpozytsiyamy tochok chyslovoyi poslidovnosti n-ho poryadku / O.V. Vorontsov // Prykladna heometriya ta inzhenerna hrafika: zb. nauk. pratsʹ – K.: KNUBA, 2012. – Vyp. 90. – S. 63 – 67. . ISSN 0131-579X
[11] Vorontsov O.V. Dyskretna interpolyatsiya superpozytsiyamy tochok chyslovykh poslidovnostey drobovo-liniynykh funktsiy / O.V. Vorontsov, N.O. Makhinʹko // Prykladna heometriya ta inzhenerna hrafika: pratsi TDATA. – Melitopolʹ: TDATA, 2013. Vyp. 4. – T. 57. – S. 62 – 67.
[12] Vorontsov O.V. Vlastyvosti superpozytsiy tochkovykh mnozhyn / O.V. Vorontsov // Prykladna heometriya ta inzhenerna hrafika: zb. nauk. pratsʹ – K.: KNUBA, 2010. – Vyp. 86. − S. 345 − 349. . ISSN 0131-579X.
[13] Vorontsov O.V. Opredeleniye diskretnykh analogov klassov elementarnykh funktsiy superpozitsiyami odnomernykh tochechnykh mnozhestv [Elektronnyy resurs] / O.V. Vorontsov, L.A. Tulupova // Universsum. Ser.: Tekhnicheskiye nauki: elektron. nauchn. zhurn. − 2014. − № 3(4). − ISSN 2311-5122.
[14] Vorontsov O.V. Dyskretna interpolyatsiya superpozytsiyamy odnovymirnykh tochkovykh mnozhyn transtsendentnykh funktsionalʹnykh zalezhnostey na prykladi hiperbolichnykh funktsiy. / O.V. Vorontsov // Visnyk Khersonsʹkoho natsionalʹnoho tekhnichnoho universytethu / Vyp. 3(54). – Kherson: KHNTU, 2015. – S. 551-554. ISSN 2078-4481
[15] Vorontsov O.V. Dyskretna interpolyatsiya heometrychnykh obraziv superpozytsiyamy dvovymirnykh tochkovykh mnozhyn funktsionalʹnykh zalezhnostey / O.V. Vorontsov, L.O. Tulupova, I.V. Vorontsova // Visnyk Khersonsʹkoho natsionalʹnoho tekhnichnoho universytethu / Vyp. 3(62). T.2. – Kherson: KHNTU, 2017. – S. 66-70. ISSN 2078-4481
[16] Vorontsov O.V. Diskretnoye modelirovaniye krivykh poverkhnostey superpozitsiyami dvumernykh tochechnykh mnozhestv / O.V. Vorontsov, L.A. Tulupova // Sbornik statey po materialam XL mezhdunarodnoy nauchno-prakticheskoy konferentsii «Tekhnicheskiye nauki – ot teorii k praktike». – Novosibirsk, 2014. – №11 (36). – S. 7 – 16. ISSN 2308-5991.
[17] Savelov A.A. Ploskiye krivyye. Sistematika, svoystva, primeneniya. (Spravochnoye rukovodstvo). Pod redaktsiyey A.P. Nordena. Gosudarstvennoye izdatel'stvo fiziko-matematicheskoy literatury. Moskva 1960 g. – 293 s.
[18] Gutak, A. D. (2015). Experimental investigation and industrial application of ranque-hilsch vortex tube. International Journal of Refrigeration, 49, 93-98. https://doi.org/10.1016/j.ijrefrig.2014.09.021
[19] Cherniha, R., & Serov, M. (2006). Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms, II. European Journal of Applied Mathematics, 17(5), 597-605. https://doi.org/10.1017/S0956792506006681
-
Downloads
-
How to Cite
Vorontsov, O., Tulupova, L., & Vorontsova, I. (2018). Geometric and Computer Modeling of Building Structures Forms. International Journal of Engineering & Technology, 7(4.8), 560-565. https://doi.org/10.14419/ijet.v7i4.8.27306Received date: 2019-02-11
Accepted date: 2019-02-11
Published date: 2018-10-13