Analysis of Heat-Insulating and Structural Building Members Behavior by the Finite Element Method
-
2018-10-13 https://doi.org/10.14419/ijet.v7i4.8.27317 -
Deformation property, finite element method (FEM), light concrete composite slabs, load, reinforcement, thermal insulation structure. -
Abstract
The paper deals with research of heat-insulating and structural elements in modern construction of Ukraine. It is established that the obtaining of theoretical models for the calculation of such type of structural elements is an economically important task that needs to be solved. The work of light polystyrene concrete slabs with profiled flooring and with different types of anchoring by finite element method (FEM) has been investigated. The method of plate models constructing for detailed study of the profiled flooring work, the material contact, their bundle, as well as the work of the reinforcement and its influence on the parameters of the stress-deformed state of polystyrene concrete and profiled flooring was proposed. Samples of light polystyrene concrete slabs with profiled flooring with different types of anchoring with the best stress-strain state characteristics were determined. The adequacy of the FEM models of plates was confirmed by comparing the results of the calculation with theoretical studies.
Â
Â
-
References
[1] Belyaeva S. Yu. Eksperimentalnyie issledovaniya zhelezobetonnyih plit, armirovannyih stalnyim profilirovannyim nastilom. Zb. nauk. prats Donbas. tekhnichn. un-tu. Alchevsk. Vyp. 20, (2005), s. 344–348. http://nvd.luguniv.edu.ua/archiv/NN2/07busspn.pdf
[2] Koval M. P., Kondriukova I. O. Doslidzhennia roboty monolitnykh zalizobetonnykh plyt zi stalevym profilovanym nastylom N80A ta boltovymy opornymy ankeramy pry dii statychnoho y vysokorivnevoho malotsyklovoho navantazhennia. Zbirnyk naukovykh prats. Seriia: haluzeve mashynobuduvannia, budivnytstvo. Poltava. Vyp. 1(43), (2015), s. 170–177. http://journals.pntu.edu.ua/index.php/znp/article/view/121.
[3] Semko O. V., Krupchenko O. A., Dariienko V. V., Hlinkin M. I. Doslidzhennia napruzheno-deformovanoho stanu zalizobetonnykh rebrystykh plyt pokryttiv v rozrakhunkovomu kompleksi NASTRAN. Problemy rozvytku dorozhno-transportnoho i budivelnoho kompleksiv : zb. statei i tez Mizhnar. nauk.-prak. konf., 3 – 5 zhovtnia 2013 r. Kirovohrad. (2013), s. 358 – 363.
[4] Leshchenko M. V., Semko V. O. Thermal characteristics of the external walling made of cold-formed steel studs and polystyrene concrete. Magazine of Civil Engineering. № 8, (2015), pp. 44–55. https://doi.org/10.5862/MCE.60.6
[5] Semko O. V., Lazariev D. M., Avramenko Yu. O. Lehkyi beton dlia zapovnennia porozhnyn stalevykh tonkostinnykh konstruktsii. Zbirnyk naukovykh prats. K.: DP NDIBK. # 74, (2011), s. 659–666.
[6] Voskobiinyk O.P., Cherednikova O.V. Experimental study of the effect of anchorage on bearing capacity and deformation property of the light concrete composite slabs. Stroitel'stvo, materialovedenie, mashinostroenie: collection of scientific papers. Dnepr : PSACEA. Issue.. 100, (2017), c. 56–63. http://smm.pgasa.dp.ua/article/viewFile/113699/108264
[7] Akpoyomare A. I., Okereke M .I., Bingley M. S. Virtual testing of composites: Imposing periodic boundary conditions on general finite element meshes. Composite Structures. № 160, (2017), pp. 983–994. https://doi.org/10.1016/j.compstruct.2016.10.114.
[8] Carrazedo R., Coda H. B. Triangular based prismatic finite element for the analysis of orthotropic laminated beams, plates and shells. Composite Structures. № 168, (2017), pp. 234–246. https://doi.org/10.1016/j.compstruct.2017.02.027.
[9] Voskobiinyk O.P., Cherednikova O.V. Light concrete composite slab with flexible reinforcement stress-strain state modeling by finite element method. Collection of scientific papers. Series: Haluzeve mashynobuduvannia, budivnytstvo. Poltava. Issue 2 (49), (2017), Ñ. 285–294. http://reposit.pntu.edu.ua/handle/PoltNTU/2845
[10] Cherednikov V., Voskobiinyk O., Cherednikova O. Evaluation of the warping model for analysis of polystyrene concrete slabs with profiled steel sheeting. Periodica Polytechnica Civil Engineering. №61(3), (2017), pp. 483–490. https://doi.org/10.3311/PPci.8717
[11] Semko O., Dariienko V., Sirobaba V. Deformability of short steel reinforced concrete structures on light concrete. International Journal of Engineering & Technology. Baku. Vol 7, No 3.2, (2018) pp. 370–375. https://www.sciencepubco.com/index.php/ijet/article/view/14555/5905
[12] Goncalves B.R., Karttunen A., Romanoff J., Reddy J.N. Buckling and free vibration of shear-flexible sandwich beams using a couple-stress-based finite element. Composite Structures. № 165, (2017), pp. 233–241. https://doi.org/10.1016/j.compstruct.2017.01.033.
[13] Voskobiinyk O.P., Cherednikova O.V. A determination of the parameters of stress-strained state of light concrete combined slabs for non-classical shear model. Зб. наук. праць Укр. держ. ун-ту залізнич. транÑп. Харків: УкрДУЗТ,. Вип. 170, (2017), pp. 132–140. http://csw.kart.edu.ua/article/viewFile/111317/106315
[14] Han J.-W., Kim J.-S., Cho M. Improved finite element viscoelastic analysis of laminated structures via the enhanced first-order shear deformation theory. Composite Structures. № 180, (2017), pp. 360–377. https://doi.org/10.1016/j.compstruct.2017.07.099.
[15] Teng X. Zhang Y.X. Nonlinear finite element analyses of FRP-strengthened reinforced concrete slabs using a new layered composite plate element. Composite Structures. № 114, (2014), pp. 20–29. https://doi.org/10.1016/j.compstruct.2014.03.040
[16] Semko V., Leshchenko M., Cherednikova O. Standardization of required level probability of no-failure operation of the building envelopes by the criterion of total thermal resistance. International Journal of Engineering & Technology. Vol. 7 (3.2), (2018), pp 382‑387.https://www.sciencepubco.com/index.php/ijet/article/view/14557
[17] Wan D., Hu D., Natarajan S., Stéphane P.A. Bordas., Long T. A linear smoothed quadratic finite element for the analysis of laminated composite Reissner–Mindlin plates. Composite Structures. № 180, (2017), pp. 395–411. https://doi.org/10.1016/j.compstruct.2017.07.092.
[18] Storozhenko L.I., Hasii H.M. The new composite designs for mine tunnel support. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. no. 4, (2015), pp. 28–34.
[19] Storozhenko L.I., Gasii G.M. Experimental research of strain-stress state of ferrocement slabs of composite reinforced concrete structure elements. Metallurgical and Mining Industry. Vol. 6, no. 6, (2014), pp. 40–42.
[20] Gasii G., Hasii O., Zabolotskyi O. Estimate of technical and economic benefits of a new space composite structure. MATEC Web of Conferences. Vol. 116, (2017), article number 02014. https://doi.org/10.1051/matecconf/201711602014
[21] Semko P. Сomparison of experimental studies and numerical modeling results of concrete filled tubular elements with demountable joints / P. Semko / Serija: haluzeve mašynobuduvannja, budivnyctvo. – Vyp. 1(50).– Poltava, 2018. – S.88–97. http://reposit.pntu.edu.ua/handle/PoltNTU/3872
-
Downloads
-
How to Cite
Cherednikova, O., Avramenko, Y., Rozdabara, O., & Lapchuk, V. (2018). Analysis of Heat-Insulating and Structural Building Members Behavior by the Finite Element Method. International Journal of Engineering & Technology, 7(4.8), 618-624. https://doi.org/10.14419/ijet.v7i4.8.27317Received date: 2019-02-11
Accepted date: 2019-02-11
Published date: 2018-10-13