Calculation of Steel Pipeline Corrosion Depth for Various Conditions of Electrolyte Solutions in Cracks

  • Authors

    • Olena Stepova
    • Anna Homenko
    • Valerii Roma
    2018-10-13
    https://doi.org/10.14419/ijet.v7i4.8.27320
  • steel oil pipeline, electrochemical corrosion, galvanic element, corrosion rate, corrosion depth, residual life.
  • On the basis of the electrochemical corrosion mathematical pipeline model in the insulating coating crack under the action of an aggressive electrolytic medium towards the pipeline metal, the  dependence was obtained that allows  to calculate the pipeline wall corrosion depth of the during the work of macro-galvanic corrosion couples in the conditions of stable and periodic stay of the aggressive solution in the damaged zone. The advantage of this model is the ability to predict the corrosion development over time regardless the corrosive electrolyte chemical composition, the possibility of obtaining necessary design parameters for operated structures. The developed dependencies of the pipeline section Ñorrosion depth make it possible to plan rationally the repair work, to predict the structure work real terms, to review the operation mode, etc. The obtained results allow us to more reliably evaluate the bearing capacity of structures that operate  in conditions of aggressive medium with cracks.

     

     

  • References

    1. [1] Polyakov, S., Klimenko, A., Malkova, O. Electrochemical monitoring pipelines for corrosion hazardous areas, Fiziko-chimichna mekhnanika materialov, No. 7 , Vol.2, (2008), рр.761 – 766.

      [2] Zhdek, A., Hrudz, M. (2012). Determination of residual life long exploited oil, taking into account existing defects and corrosion conditions. Naukovy visnyk Ivano-Phrankivskogo natsiionalnogo universytetu naphty I hazu, no. 2(32), 58 – 66.

      [3] Rihan Omar Rihan Electrochemical Corrosion Behavior of X52 and X60 Steels in Carbon Dioxide Containing Saltwater Solution (2013).Vol.16(1). 227-236 DDOI: 10.1590/S1516-14392012005000170

      [4] Held P.V., Riabov R.A. Vodorod v metallakh. – M.: Metallurhyia. – 1974. – 272s.

      [5] Romanyv O. N., Yarema S. Ya., Nykyforchyn H. N., Makhutov N. A., Stadnyk M. M. Ustalost y tsyklycheskaia treshchynostoikost konstruktsyonnуkh materyalov. – K.: Naukova dumka. – 1990. – 680 р.

      [6] Severnev M.M. Yznos y korrozyia selskokhoziaistvennуkh mashyn / M.M. Severnev, N.N. Podlekarev, V.Sh. Sokhadze, V.O. Kytykov // Belarus. navuka. – Mynsk – 2011. – 333 р.

      [7] Iedyna systema zakhystu vid korozii ta starinnia. Metody otsinky biokoroziinoi aktyvnosti gruntiv i vyiavlennia naiavnosti mikrobnoi korozii na poverkhni pidzemnykh metalevykh sporud : DSTU 3291-95. – [Chynnyi vid 1997-01-01]. – K. : Derzhstandart Ukrainy, 1995. – 33 s. – (Natsionalnyi standart Ukrainy).

      [8] Stepova O. (2011). Technological safety operation of main oil pipelines. Zbirnyk naukovykh prac (galuzeve mashynobydyvannja, budibnytsitvo), issue. 2(30), Poltava: Poltava National Technical University named after Yuri Kondratyk. 266 – 269

      [9] Stepova, O. (2011). Ensuring environmental safety of oil exploitation by monitoring electrochemical parameters. Zbirnyk naukovykh prac (tekhnichni nauky), issue. 1(53), Rivne: Natsionalny universitet vodnogo gospodarstva, 201 – 207

      [10] Dosvid provedennia tekhnichnoho diahnostuvannia tekhnolohichnoho obladnannia i truboprovodiv naftoperekachuvalnykh stantsii /Ia.B. Danyliak, N.L. Tatsakovych, O.M. Karpash, R.M. Basarab // Nadezhnost y bezopasnost mahystralnoho truboprovodnoho transporta: materyalу VII Mezhdunarodnoi nauchno-tekhnycheskoi konferentsyy (Novopolotsk, 22-25noiabria 2011 h.). – Novopolotsk: PHU, 2011. – S. 138-141.

      [11] Becker, М. (2007). Ensuring reliable operation of the system oil transportation. Sbornuk dokladov nauchno-praktucheskogo semunara [collection of scientific and practical seminar] Kyiv, Institute elektrocvarku umenu E.O. Patona, April, 17–18, 2007, 3–5.

      [12] Rohoznyuk, B., Gujov, Yu. and Kuzmenko, Yu. (2000). Technical operation of underground corrosion protection of oil pipelines. [Technical operation of underground corrosion protection of oil pipelines], Kyiv: Tehdiagaz.

      [13] Kornienko, S. and Kortubyak, O. (2008). Resources space underground geological Ukraine. Visnyk Kyivskogo universytetu. Seriya: Geologiya no. 43, 35–37.

      [14] Miniyailo, I.V. (2009) Determination of corrosion rate of metal pipes on the Urengoy-Chelyabinsk gas pipeline. News of Higher Educational Establishments. Oil and gas. Publisher: Tyumen Industrial University. - no6, 52-58.

      [15] Instructions for determining the corrosion rate of the metal of the walls of the hulls of vessels and pipelines at the enterprises of the Ministry of Oil and Gas Industry of the USSR (1983) Publisher: Volgograd,124Ñ. URL: http://meganorm.ru/Data2/1/4293801/4293801208.htm

      [16] URL: https://all4study.ru/proizvodstvo/raschet-utoneniya-stenki-za-schet-korrozii.html

      [17] Bridgeman, J. and Shankar, R. (1991) Erosion-corrosion data handling for reliable NDE. Nuclear Eng. And Design. no. 131, 285-297.

      [18] H. Lee (2003) Thinned Pipe Management Program of Korean NPPs. S / Trans. of the 17th Inter. Conf. on Structure Mech. in Reactor Technology (SmiRT 17) Prague, Czech Republic. August 17-22, 1-8.

      [19] Moolayil T.M. (2007) Mitigation of degradation of high energy secondary cecle piping due to FAC and life management in Indian NPPs. Second international Symposium on Nuclear Power Plant Life Management from 15-18th October, 2007 at Shanghai China, 48 p.

      [20] Moulayil .M. (2008) o the question of corrosion under the influence of flow. Nuclear technology abroa. no 12, 16-21.

      [21] Baranenko V.I. (2010) Calculation of the rate of erosion-corrosion wear and residual life of pipelines AES. Proceedings of Higher Educational Institutions. Nuclear energy. no2, 55-63

      [22] Vorobeva G. (1975). Corrosion resistance of materials in aggressive environments of chemical industries. Handbook of Chemistry. М.: Chemistry, 816

      [23] Romanov V.V. Methods for studying corrosion of metals (1965) М.: Metallurgy, 280

      [24] Stepova, O. and Paraschienko, I (2017) Modeling of the corrosion process in steel oil pipelines in order to improve environmental safety Eastern-European journal of enterprise technologies, industrial and technology systems. Vol. 2, No 1 (86), 15-20.URL: http://journals.uran.ua/eejet/article/view/96425 DOI: 10.15587/1729-4061.2017.96425[25] Stepova, O. and Paraschienko, I (2018) Calculation of steel pipeline corrosion depth at the work of galvanic corrosion element operating /O. Stepova, Iryna Parashchiienko2, Iryna Lartseva3// International Journal of Engineering & Technology. Vol.7, No3.2.- 2018/- P.431-435 DOI: 10.14419 / ijet.v7i3.2.14566 http://www.sciencepubco.com/index.php/ijet/article/view/14566/5916

      [26]Pichugin S, Zyma O, Vynnykov P, “Reliability Level of the Buried Main Pipelines Linear Part †Recent Progress in Steel and Composite Structures – Proceedings of the 13th International Conference on Metal Structures, ICMS 2016, (2016), pp: 551–558.

      DOI: 10.1201/b21417-76

      [27] Pichugin, S. F., & Makhin'Ko, A. V. (2009). Calculation of the reliability of steel underground pipelines. Strength of Materials, 41(5), 541-547. https://doi.org/10.1007/s11223-009-9153-0

  • Downloads

  • How to Cite

    Stepova, O., Homenko, A., & Roma, V. (2018). Calculation of Steel Pipeline Corrosion Depth for Various Conditions of Electrolyte Solutions in Cracks. International Journal of Engineering & Technology, 7(4.8), 636-640. https://doi.org/10.14419/ijet.v7i4.8.27320