A New Hybrid of Conjugate Gradient Method with Descent Properties

  • Authors

    • Syazni Shoid
    • Norhaslinda Zull
    • Mohd Rivaie
    • Mustafa Mamat
    • Puspa Liza Ghazali
    • Mohamad Afendee Mohamed
    https://doi.org/10.14419/ijet.v7i3.28.27385
  • Conjugate gradient method, descent direction, sufficient descent condition, Strong Wolfe Powell line search, hybrid method.
  • Abstract

    Many researchers are interested in developing and improving the conjugate gradient (CG) method because of its convergence properties and efficiency in solving large-scale problems. This work introduces new CG coefficient ( ) will be presented in such a way to improve the performance of the previous CG methods. The new method is the hybrid between HS and SYRM methods. This method always produces a descent search direction at each iteration. The preliminary numerical comparisons with some others CG methods have shown that this new method is efficient in solving all given problems under Strong Wolfe Powell (SWP) line search condition.

     

     

  • References

    1. [1] Fletcher R & Reeves C (1964), Function minimization by conjugate gradients, Comput. J., 7, 149-154.

      [2] Polak E & Ribiere G (1969), Note sur la convergence de directions conjugees, Rev.Francaise Informat Recherche Operationelle, 3E Annee, 16, 35-43.

      [3] Hestenes MR & Steifel E (1952), Method of conjugate gradient for solving linear equations, J. Res. Nat. Bur. Stand., 49, 409-436.

      [4] Rivaie M, Mamat M, Leong WJ & Ismail M (2012), A new conjugate gradient coefficient for large scale nonlinear unconstrained optimization, Int. Journal of Math. Analysis, 6(23), 1131-1146.

      [5] Wei Z X, Yao S & Liu L (2006), The convergence properties of some new conjugate gradient methods, Applied Mathematics and Computation,183, 1341-1350.

      [6] Abashar A, Mamat M, Rivaie M, Mohd I & Omer O (2014), The proof of sufficient descent condition for a new type of conjugate gradient methods, AIP Conf. Proc., 1602(1), 296-303.

      [7] Sui Q (2011), An improved conjugate gradient method and it’s global convergence, Applied Mathematical Sciences, 5(50), 2483-2490.

      [8] Rivaie M, Abashar A, Mamat M & Mohd I (2014), The convergence properties of a new type of conjugate gradient methods, Applied Mathematical Sciences, 8, 1, 33-44.

      [9] Wolfe P (1971), Convergence conditions for ascent method. II: some corrections, SIAM Rev., 13,2, 185-188.

      [10] Andrei N (2008), An unconstrained optimization test function collection, J. Adv. Modeling and Optimization, 10, 147-161.

      [11] Dolan E & More JJ (2002), Benchmarking optimization software with performance profile, Math. Prog., 91(2), 201-213.

      [12] Touati-Ahmed D & Storey C (1990), Efficient hybrid conjugate gradient techniques, J. Optim. Theory Appl., 64(2), 379-397.

      [13] Salih Y, Hamoda MA & Rivaie M (2018), New hybrid conjugate gradient method with global convergence properties for unconstrained optimization, Malaysian Journal of Computing and Applied Mathematics, 1(1), 29-38.

      [14] Alhawarat A, Mamat M, Rivaie M & Salleh Z (2015), An efficient hybrid conjugate gradient method with the strong wolfe-powell line search, Mathematical Problems in Engineering, 2015, 1-7.

      [15] Hilstrom KE (1977), A simulation test approach to the evaluation of nonlinear optimization algorithms, ACM Trans. Maths. Softw, 3, 305-315.

      [16] Shoid S, Rivaie M & Mamat M (2016), A modification of classical conjugate gradient method using strong wolfe line search, AIP Conf. Proc., 1739, 1-8.

      [17] Shapiee N, Rivaie M & Mamat M (2016), A new classical conjugate coefficient with exact line search, AIP Conf. Proc., 1739, 1-8.

      [18] Ghani ANH, Rivaie M & Mamat M (2016), A modified form of conjugate gradient method for unconstrained optimization problems, AIP Conf. Proc., 1739, 1-8.

      [19] Hajar N, Mamat M, Rivaie M & Jusuh I (2016), A new of descent conjugate gradient method with exact line search, AIP Conf. Proc., 1739, 1-8.

      [20] Khadijah W, Rivaie M, Mamat M & Jusuh I (2016), A spectral KRMI conjugate gradient method under the strong-Wolfe line search, AIP Conf. Proc., 1739, 1-8

      [21] Abidin ZZ, Mamat M & Rivaie M (2016), A new steepest descent method with global convergence properties, AIP Conf. Proc., 1739, 1-8.

      [22] Abashar A, Mamat M, Rivaie M, Mohd I & Omer O (2014), Global convergence properties of a new class of conjugate gradient method for unconstrained optimization, Applied Mathematical Sciences, 8(67), 3307-3319.

      [23] Abidin NZ, Mamat M, Dangerfield B, Zulkepli JH, Baten MA & Wibowo A (2014), Combating obesity through healthy eating behavior: A call for system dynamics optimization, Plos One, 9(12), 1-17.

  • Downloads

  • How to Cite

    Shoid, S., Zull, N., Rivaie, M., Mamat, M., Liza Ghazali, P., & Afendee Mohamed, M. (2018). A New Hybrid of Conjugate Gradient Method with Descent Properties. International Journal of Engineering & Technology, 7(3.28), 354-357. https://doi.org/10.14419/ijet.v7i3.28.27385

    Received date: 2019-02-12

    Accepted date: 2019-02-12