Analysis of Bovine Spermatozoa CSP-Gene Expression using qPCR and Relative Quantification Method as Biodiagnostic Tool for Fertilizing Capacity

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Gene expression studies enable for real-time relative quantification of expressed genes. However, the incorporation of a primary discerning tool before amplification for specific sequences of genes of interest is yet to be implemented. The amplification of gene sequences from discriminate sample groups further enhances the results following qPCR and provides an absolute exclusive measurement for the defined sample. Cryopreserved spermatozoa have characteristics of compromised sperm quality as the cells are exposed to a rapid temperature downshift not normally encountered by such cells in vivo. Thus, the use of a separation system before cryopreservation produces a refined outcome in gene expression studies. The proliferation of Cold Shock Protein (CSP) can relatively be quantified by conducting qPCR following sperm selection and cryopreservation. CSPs are indicators of cells adapting to the decrease in temperature and indirectly acts as an intracellular protective mechanism for the cell. The current study compares the effects of sperm selection system in isolating a homogeneous population of spermatozoa for cryopreservation followed by quantification of CSP gene. Method of molecular assessment involved quantifying the amplified sequences via qPCR and gene expression following sperm isolation was significant in increasing spermatozoa viability by 26.2% (P< 0.05). The relative fold expression of CSP gene for treatment group increased from 1.00 fold to 1.38 fold. The Cq values for treatment group had recorded an earlier point of amplification (Cq= 24.87) as compared to control Cq= 25.83. Our findings suggest that the use of a sperm isolation system before cryopreservation would increase the probability of obtaining higher amplifications of CSP genes that would confer protection against extremely low temperatures during cryopreservation. This would increase the likelihood of in vitro fertilization using cryopreserved spermatozoa by implementing qPCR as a potential biomolecular diagnostic tool to ascertain the fertilizing potential of the spermatozoa.



  • Keywords

    Biodiagnostic tool; cold schock protein; CSP gene; fertilizing capacity; quantitative real-time PCR (qPCR); spermatozoa

  • References

      [1] Henrik, H., Karatzas, A.K., Wouters, J.A., & Abee, T.J. (2002). Enhanced level of cold shock proteins in Listeria monocytogenes Lo28 upon exposure to low temperature and high hydrostatic pressure. Appl. Env. Microbiol., 68(2): 456-463.

      [2] Yamanaka, K. (1999). Cold shock response in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 1(2): 193-202.

      [3] Newkirk, K., Feng, W., Jiang, W., Tejero, R., Emerson, S.D., Inouye, M., et al. (1994). Solution NMR structure of the major cold shock protein (CSPA) from Escherichia coli: identification of a binding epitope for DNA. Proc.Nat.Acad.Sci., 91:5114.

      [4] Claassens, O. E., Menkveld, R. Harrison, K. L., 1998. Evaluation of three substitutes for Percoll in sperm separation by density gradient centrifugation. Human Reproduction 13(11): 3139-3143.

      [5] Ismail, N. H., Osman, K., Yusof, F. Z. M., Mohamad, S. F. S., Jaafar, F. H. F., & Ibrahim, S. F. (2017). Improvement of Post-Thaw Sperm Kinematics and DNA Integrity of Cross-Bred Bovine Sperm by Incorporating DGC as Selection Method Prior to Cryopreservation. Journal of Agricultural Science, 9(13): 24.

      [6] Syed Mohamad, S. F., Ibrahim, S. F., Ismail, N. H., Osman, K., Jaafar, F. H. F., Nang, C. F. and Mohd Yusof, F. Z. (2018). Quantification of HSP70 Gene Expression and Determination of Capacitation Status of Magnetically Separated Cryopreserved Bovine Spermatozoa at Different Thawing Temperature and Time. Sains Malaysiana 47(6): 1101–1108.

      [7] Zimin, A. V., Delcher, A. L., Florea, L., Kelley, D. R., Schatz, M. C., Puiu, D., ... & Marçais, G. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome biology, 10(4): R42.

      [8] Livak, K. J. and Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2DDCT Method. Methods, 25: 402-408.

      [9] Krawetz, S. A. (2005). Paternal contribution: new insights and future challenges. Nature Reviews Genetics, 6(8): 633-642.

      [10] Boerke, A., Dieleman, S. J. and Gadella, B. M. (2007). A Possible Role for Sperm RNA in Early Embryo Development. Theriogenology, 68(1): S147-S155.

      [11] Bhargava, P. M., Bishop, M. W. H. and Work, T. S. (1959). The Chemical Composition of Bull Semen with Special Reference to Nucleic Acids, Free Nucleotides and Free Amino Acids. Biochem Journal, 73(2): 242-247.

      [12] Grunewald, S., Paasch, U., Glander, H. J. and Anderegg, U. (2005). Mature human spermatozoa do not transcribe novel RNA. Andrologia, 37(2-3): 69-71.

      [13] Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., ... & Vandesompele, J. (2009). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical chemistry, 55(4): 611-622.

      [14] Ririe, K. M., Rasmussen, R. P. and Wittwer, C. T. (1997). Product Differentiation by Analysis of DNA Melting Curves during the Polymerase Chain Reaction. Analytical Biochemistry 245 (2): 154-160.

      [15] Schumann, W. (2000). Function and regulation of temperature inducible bacterial proteins on the cellular metabolism. In H. J. Henzler, Influence of stress on cell growth and product formation: Volume 67 of Advances in biochemical engineering/biotechnology (pp. 1-34). New York: Springer.

      [16] Al-Fageeh, M. B. and Smales, C. M. (2006). Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochemical Journal, 397: 247.

      [17] Swelum, A. A., Mansour, H. A., Elsayed, A. A. and Amer, H. A. (2011). Comparing ethylene glycol with glycerol for cryopreservation of buffalo bull semen in egg-yolk containing extenders. Theriogenology, 76 (5): 833-842.

      [18] Chaikam, V. and Karlson, D. T. (2010). Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. Biochem. Mol. Biol. Reports, 43 (1): 1-8.

      [19] Boe-Hansen, G. B., Rego, J. P. A., Crisp, J. M., Moura, A. A., Nouwens, A. S., Li, Y., ... & McGowan, M. R. (2015). Seminal plasma proteins and their relationship with percentage of morphologically normal sperm in 2-year-old Brahman (Bos indicus) bulls. Animal reproduction science, 162: 20-30.

      [20] Sharma, R., Agarwal, A., Mohanty, G., Jesudasan, R., Gopalan, B., Willard, B., ... & Sabanegh, E. (2013). Functional proteomic analysis of seminal plasma proteins in men with various semen parameters. Reproductive Biology and Endocrinology, 11(1): 38.

      [21] Hargreave, T. B. (2000). Genetic basis of male fertility. British Medical Bulletin, 56(3): 650-671.

      [22] Chai, N. N., Salido, E. C., & Yen, P. H. (1997). Multiple Functional Copies of the RBMGene Family, a Spermatogenesis Candidate on the Human Y Chromosome. Genomics, 45(2): 355-361.

      [23] NIH (National Institute of Health, US). (2018a). National Library of Medicine (US: RBMY1A1 gene). Genetics Home Reference [Internet]. Bethesda (MD): The Library; 2018 Mar 27. RBMY1A1 gene; [reviewed 2018 Mar; cited 2018 Apr 02]. Available from:

      [24] NIH (National Institute of Health, US). (2018b). National Library of Medicine (US: DAZ1 gene). Genetics Home Reference [Internet]. Bethesda (MD): The Library; 2018 Mar 27. DAZ1 gene; [reviewed 2018 Mar; cited 2018 Apr 02]. Available from:

      [25] Rajoriya, J. S., Prasad, J. K., Ghosh, S. K., Perumal, P., Kumar, A., Kaushal, S., & Ramteke, S. S. (2014). Studies on effect of different seasons on expression of HSP70 and HSP90 gene in sperm of Tharparkar bull semen. Asian Pacific Journal of Reproduction, 3(3):192-199.

      [26] Zhang, H. G., Wang, R. X., Li, L. L., Sun, W. T., Zhang, H. Y., & Liu, R. Z. (2015). Male carriers of balanced reciprocal translocations in Northeast China: sperm count, reproductive performance, and genetic counseling. Genet Mol Res, 14(4): 18792-8.

      [27] Yildiz, C., Ottavani, P., Law, N., Ayearst, R., Liu, L. and McKerlie, C. (2007). Effects of cryopreservation on sperm quality, nuclear DNA integrity, in vitro fertilization and in vitro embryo development in the mouse. Society for Reproduction and Fertility, 133: 585-595.

      [28] Gualerzi, C. O., Giulidori, A. M. and Pon, C. L. (2003). Transcriptional and Post transcriptional Control of Cold-Shock Genes. Journal of Molecular Biology,331(3): 527-539.

      [29] Fraser, L., Strzezek, J. and Kordan, W. (2011). Effect of Freezing on Sperm Nuclear DNA. Reproduction in Domestic Animals, 46 (s2): 14-17.

      [30] Sakkas, D. and Alvarez, J. G. (2010). Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertility and Sterility, 93 (4): 1027-1036.

      [31] Pfaffl, M. W. (2004). Chapter 3: Quantification strategies in real-time PCR in S. A. Bustin (editor), A-Z of quantitative PCR (pp. 87-112). California: International University Line.

      [32] Ishijima, S. (2011). Dynamics of flagellar force generated by a hyperactivated spermatozoon. Reproduction, 142 (3): 409-415.

      [33] Kathiravan, P., Kalatharan, J., Karthikeya, G., Rengarajan, K. and Kadirvel, G. (2011). Objective Sperm Motion Analysis to Assess Dairy Bull Fertility Using Computer‐Aided System–A Review. Reproduction in Domestic Animals, 46 (1): 165-172.

      [34] Verstegen, J., Iguer-Ouada, M. and Onelin, K. (2002). Computer Assisted Semen Analyzers in Andrology Research and Veterinary Practice. Theriogenelogy, 57: 149-197.

      [35] Etchegaray, J.P. and Inouye, M. (1999). CspA, CspB, and CspG, major cold shock proteins of Escherichia coli, are induced at low temperature under conditions that completely block protein synthesis. Journal of Bacteriology, 181(6):1827-1830.

      [36] Lopez, M. M. and Makhatadze, G. I. (2000). Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates. Biochimica et Biophysica Acta, 1479: 196-202.




Article ID: 27512
DOI: 10.14419/ijet.v7i4.14.27512

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.