Microwave Irradiation Assisted Supercritical Carbon Dioxide Extraction of Bio-Oils from Chlorella Vulgaris Microalgae
-
2019-12-24 https://doi.org/10.14419/ijet.v7i4.14.27568 -
Response surface methodology, supercritical carbon dioxide extraction, pretreatment, Chlorella vulgaris, Microwave irradiation, fatty acid methyl ester. -
Abstract
Chlorella vulgaris is one of the promising microalgae strains that can produce high yield of bio-oils. The C. vulgaris was pretreated with microwave irradiation prior to extraction using supercritical carbon dioxide (SCCO2). Fourier transform infrared spectroscopy (FTIR) analysis showed microwave irradiation pretreatment does not affect the material composition of C. vulgaris. Scanning electron microscopy (SEM) of the microwave irradiation pretreated microalgae showed an agglomeration of the cells with the cells shape became distorted due to rupturing of the cell walls. Optimization of the SCCO2 process parameters (pressure, temperature and CO2 flow rate) was performed by using response surface methodology (RSM) with central composite design (CCD). Two factors significantly affecting the extraction yield were temperature and pressure. The model equation also predicted the optimum condition for the SCCO2 (without microwave pretreatment) at 70 , 5676 psi and 7 sL/ min while optimum condition for SCCO2 (microwave irradiation pretreatment) at 63 , 5948 psi and 10 sL/ min. High amount of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), -linolenic acid and palmitoleic acid were found in the extracted oil with microwave irradiation pre-treatment sample. In addition, the polyunsaturated fatty acids (PUFA) content in the microwave irradiation pretreated oil was considerably low and is desirable for biodiesel production.
Â
-
References
[1] a. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, and J. K. Lim, “Microalgae as a sustainable energy source for biodiesel production: A review,†Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 584–593, Jan. 2011.
[2] A. Demirbas and M. Fatih Demirbas, “Importance of algae oil as a source of biodiesel,†Energy Convers. Manag., vol. 52, no. 1, pp. 163–170, Jan. 2011.
[3] J. R. McMillan, I. A. Watson, M. Ali, and W. Jaafar, “Evaluation and comparison of algal cell disruption methods: Microwave, waterbath, blender, ultrasonic and laser treatment,†Appl. Energy, vol. 103, pp. 128–134, Mar. 2013.
[4] J.-Y. Lee, C. Yoo, S.-Y. Jun, C.-Y. Ahn, and H.-M. Oh, “Comparison of several methods for effective lipid extraction from microalgae.,†Bioresour. Technol., vol. 101 Suppl, no. 1, pp. S75-7, Jan. 2010.
[5] A. Bahadar, M. B. Khan, M. a Asim, and K. Jalwana, Chapter 21 - Supercritical Fluid Extraction of Microalgae (Chlorella vulagaris) Biomass. Elsevier, 2015.
[6] C.-H. Cheng, T.-B. Du, H.-C. Pi, S.-M. Jang, Y.-H. Lin, and H.-T. Lee, “Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2.,†Bioresour. Technol., vol. 102, no. 21, pp. 10151–3, Nov. 2011.
[7] S. ÄurÄ‘ević, S. Milovanović, K. Å avikin, M. Ristić, N. Menković, D. PljevljakuÅ¡ić, S. Petrović, and A. Bogdanović, “Improvement of supercritical CO 2 and n -hexane extraction of wild growing pomegranate seed oil by microwave pretreatment,†Ind. Crops Prod., vol. 104, no. December 2016, pp. 21–27, 2017.
[8] A. T. C. Y. GE, Y. NI, H. YAN, Y. CHEN, “Optimization of the Supercritical Fluid Extraction of Natural Vitamin E from Wheat Germ Using Response Surface Methodology,†J. Food Sci., vol. 67, no. 1, 2002.
[9] S. R. R. Comim, K. Madella, J. V. Oliveira, and S. R. S. Ferreira, “Supercritical fluid extraction from dried banana peel (Musa spp., genomic group AAB): Extraction yield, mathematical modeling, economical analysis and phase equilibria,†J. Supercrit. Fluids, vol. 54, no. 1, pp. 30–37, 2010.
[10] M. J. H. Akanda, M. Z. I. Sarker, N. Norulaini, S. Ferdosh, M. M. Rahman, and A. K. M. Omar, “Optimization of supercritical carbon dioxide extraction parameters of cocoa butter analogy fat from mango seed kernel oil using response surface methodology,†J. Food Sci. Technol., vol. 52, no. 1, pp. 319–326, 2015.
[11] C. Safi, B. Zebib, O. Merah, P.-Y. Pontalier, and C. Vaca-Garcia, “Morphology, composition, production, processing and applications of Chlorella vulgaris: A review,†Renew. Sustain. Energy Rev., vol. 35, pp. 265–278, 2014.
[12] J. H. Waterborg and H. R. Matthews, “The lowry method for protein quantitation.,†Methods Mol. Biol., vol. 1, pp. 1–3, 1984.
[13] S. S. Nielsen, “Food Analysis Laboratory Manual,†Evaluation, pp. 9–16, 2010.
[14] Y. Hu, M. Gong, C. (Charles) Xu, and A. Bassi, “Investigation of an alternative cell disruption approach for improving hydrothermal liquefaction of microalgae,†Fuel, vol. 197, pp. 138–144, 2017.
[15] C. Dejoye, M. A. Vian, G. Lumia, C. Bouscarle, F. Charton, and F. Chemat, “Combined extraction processes of lipid from Chlorella vulgaris microalgae: Microwave prior to supercritical carbon dioxide extraction,†Int. J. Mol. Sci., vol. 12, no. 12, pp. 9332–9341, Dec. 2011.
[16] C. Crampon, A. Mouahid, S.-A. A. Toudji, O. Lépine, and E. Badens, “Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata,†J. Supercrit. Fluids, vol. 79, pp. 337–344, Jul. 2013.
[17] K. M. Isa, S. Daud, N. Hamidin, K. Ismail, S. A. Saad, and F. H. Kasim, “Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM),†Ind. Crops Prod., vol. 33, no. 2, pp. 481–487, 2011.
[18] M. ’Azim Jamaluddin, K. Ismail, M. A. Mohd Ishak, Z. Ab Ghani, M. F. Abdullah, M. T. U. Safian, S. S. Idris, S. Tahiruddin, M. F. Mohammed Yunus, and N. I. N. Mohd Hakimi, “Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM),†Renew. Energy, vol. 55, pp. 357–365, 2013.
[19] N. Aslan, “Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration,†Powder Technol., vol. 185, no. 1, pp. 80–86, 2008.
[20] H.-Y. Shin, J.-H. Ryu, S.-Y. Bae, C. Crofcheck, and M. Crocker, “Lipid extraction from Scenedesmus sp. microalgae for biodiesel production using hot compressed hexane,†2014.
[21] Z. Hu, X. Ma, and E. Jiang, “The effect of microwave pretreatment on chemical looping gasification of microalgae for syngas production,†Energy Convers. Manag., vol. 143, pp. 513–521, 2017.
[22] P. Nautiyal, K. a. Subramanian, and M. G. Dastidar, “Production and characterization of biodiesel from algae,†Fuel Process. Technol., vol. 120, pp. 79–88, Apr. 2014.
[23] D. Surendhiran and M. Vijay, “Effect of Various Pretreatment for Extracting Intracellular Lipid from Nannochloropsis oculata under Nitrogen Replete and Depleted Conditions,†ISRN Chem. Eng., vol. 2014, pp. 1–9, 2014.
[24] R. S. Pohndorf, Ã. S. Camara, A. P. Q. Larrosa, C. P. Pinheiro, M. M. Strieder, and L. A. A. Pinto, “Production of lipids from microalgae Spirulina sp.: Influence of drying, cell disruption and extraction methods,†Biomass and Bioenergy, vol. 93, pp. 25–32, 2016.
[25] S. Dharma, H. H. Masjuki, H. Chyuan, A. H. Sebayang, A. S. Silitonga, F. Kusumo, and T. M. I. Mahlia, “Optimization of biodiesel production process for mixed Jatropha curcas – Ceiba pentandra biodiesel using response surface methodology,†Energy Convers. Manag., vol. 115, pp. 178–190, 2016.
[26] A. Rai, B. Mohanty, and R. Bhargava, “Modeling and response surface analysis of supercritical extraction of watermelon seed oil using carbon dioxide,†Sep. Purif. Technol., vol. 141, pp. 354–365, 2015.
[27] N. Söyler, J. L. Goldfarb, S. Ceylan, and M. T. Saçan, “Renewable fuels from pyrolysis of Dunaliella tertiolecta: An alternative approach to biochemical conversions of microalgae,†Energy, vol. 120, pp. 907–914, 2017.
[28] G. Sodeifian, N. Saadati Ardestani, S. A. Sajadian, and S. Ghorbandoost, “Application of supercritical carbon dioxide to extract essential oil from Cleome coluteoides Boiss: Experimental, response surface and grey wolf optimization methodology,†J. Supercrit. Fluids, vol. 114, pp. 55–63, 2016.
[29] X. Xu, Y. Gao, G. Liu, Q. Wang, and J. Zhao, “Optimization of supercritical carbon dioxide extraction of sea buckthorn (Hippophae thamnoides L.) oil using response surface methodology,†LWT - Food Sci. Technol., vol. 41, no. 7, pp. 1223–1231, 2008.
[30] X. Wang, H. Zou, and L. Liu, “Optimizing synthesis parameters of short carbon fiber reinforced polysulfonamide composites by using response surface methodology,†Polymer Testing, 2017.
[31] A. Y. Ani, M. Azlan, M. Ishak, and K. Ismail, “Production of Biodiesel via In-Situ Supercritical Methanol Transesterification,†Biodiesel - Feed. Process. Technol., pp. 229–246, 2011.
[32] Z. Hou, Y. Zheng, Y. Gao, X. Liu, F. Yuan, and G. Liu, “Optimization of supercritical carbon dioxide removal of lipid and cholesterol from goat placenta using response surface methodology,†Food Bioprod. Process., vol. 88, no. 2–3, pp. 298–304, 2010.
[33] E. Yildiz-Ozturk and O. Yesil-Celiktas, “Supercritical CO2 extraction of hydrocarbons from Botryococcus braunii as a promising bioresource,†J. Supercrit. Fluids, vol. 130, no. February, pp. 261–266, 2017.
[34] N. A. Nik Norulaini, W. B. Setianto, I. S. M. Zaidul, A. H. Nawi, C. Y. M. Azizi, and A. K. M. Omar, “Effects of supercritical carbon dioxide extraction parameters on virgin coconut oil yield and medium-chain triglyceride content,†Food Chem., vol. 116, no. 1, pp. 193–197, 2009.
[35] A. Piasecka, I. Krzemińska, and J. Tys, “Physical Methods of Microalgal Biomass Pretreatment,†Int. Agrophysics, vol. 28, no. 3, pp. 341–348, 2014.
[36] M. Ali and I. A. Watson, “Microwave treatment of wetalgal paste for enhanced solvent extraction of lipids for biodiesel production,†Renew. Energy, vol. 76, pp. 470–477, 2015.
[37] A. K. Sharma, P. K. Sahoo, S. Singhal, and G. Joshi, “Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris,†Bioresour. Technol., vol. 216, pp. 793–800, 2016.
[38] R. Halim, M. K. Danquah, and P. a Webley, “Extraction of oil from microalgae for biodiesel production: A review.,†Biotechnol. Adv., vol. 30, no. 3, pp. 709–32, 2012.
-
Downloads
-
How to Cite
N. Ibrahim, S., A. Radzun, K., & Ismail, K. (2019). Microwave Irradiation Assisted Supercritical Carbon Dioxide Extraction of Bio-Oils from Chlorella Vulgaris Microalgae. International Journal of Engineering & Technology, 7(4.14), 221-226. https://doi.org/10.14419/ijet.v7i4.14.27568Received date: 2019-02-19
Accepted date: 2019-02-19
Published date: 2019-12-24