Antifungal Potential of Organic Acids Produced by Mortierella Alpina

  • Authors

    • Olga N. Shemshura
    • Zhazira N. Shemsheyeva
    • Amankeldy K. Sadanov
    • Bozena Lozovicka
    • Svetlana V. Kamzolova
    • Igor G. Morgunov
    2018-12-03
    https://doi.org/10.14419/ijet.v7i4.38.27767
  • Fungus Mortierella Alpina, Arachidonic Acid, Phytopathogenic Fungi, Mycotoxins
  • The effect of metabolites is synthesized by M. alpina for growth and the synthesis of mycotoxins was studied using phytopathogenic fungi Purpureocillium lilacinum, Fusarium tricinctum and Fusarium oxysporum on infected rhizosphere and seeds of alfalfa cultivars. It was found that culture filtrate medium is suppressed into colony formation of phytopathogenic fungi from 56 to 96%. Arachidonic acid inhibits the growth of F. tricinctum and F. oxysporum by 69 to 90%, respectively, and enhanced by 62% in P. lilacinum. Moreover, arachidonic acid was found to be active inhibitor to the synthesis of mycotoxins by phytopathogenic fungi: in the presence of arachidonic acid F. oxysporum and F. tricincium do not synthesize zearalenone, and P. lilacinum - roquefortine and fellutanine.

     



  • References

    1. [1] Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250-258. doi:10.1016/j.tibtech.2012.01.003

      [2] Eroshin VK, Dedyukhina EG (2002) Effect of lipids from Mortierella hygrophila on plant resistance to phytopathogens. World J Microbiol Biotechnol 18:165–167. doi: 10.1023/A:1014429527591

      [3] Kang HC, Park YH, Go SJ (2003) Growth inhibition of a phytopathogenic fungus, Colletotrichum species by acetic acid. Microbiol Res 158: 321-326. doi:10.1078/0944-5013-00211

      [4] Huang CB, George B, Ebersole JL (2010) Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch Oral Biol Aug 55(8):555–360. doi:10.1016/j.archoralbio.2010.05.009

      [5] Fatemeh S. N., Navazolah S., Heshmatolah A., Lachin M., Reza G. (2014) Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research 54 (4): 383-389.

      [6] Kamzolova SV, Vinokurova NG, Shemshura ON, Bekmakhanova NE, Lunina JN, Samoilenko VA, Morgunov IG (2014) The production of succinic acid by yeast Yarrowia lipolytica through a two-step process. Appl Microbiol Biotechnol V. 98. № 18. – P. 7959–7969. doi:10.1007/s00253-014-5887-0

      [7] Kamzolova SV, Samoilenko VA, Shemshura ON, Bekmakhanova NE, Lunina JN,Morgunov IG (2016) The method of α-ketoglutaric acid production from ethanol by yeast Yarrowia lipolytica. Intern Sci Pract Conf Almaty 213–216. (in Russian)

      [8] Shemshura ON, Bekmakhanova NE, Mazunina MN, Meyer SL, Rice CP, Masler EP (2016) Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus. FEMS Microbiol Lett 363(5):fnw026. doi: 10.1093/femsle/fnw026.

      [9] Morgunov IG, Kamzolova SV, Dedyukhina EG, Chistyakova TI, Lunina JN, Mironov AA, Stepanova NN, Shemshura ON, Vainshtein MB (2017) Application of organic acids for plant protection against phytopathogens. Appl Microbiol Biotechnol 101(3):921-932. doi: 10.1007/s00253-016-8067-6

      [10] Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C (2010) Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl Microbiol Biotechnol 87(3):899-911. doi.org/10.1007/s00253-010-2657-5

      [11] Solarska E., Marzec M., Kuzdraliński A., Muszyńska M. 2012. The occurrence of mycotoxins in organic spelt products. Journal of Plant Protection Research, 52 (2): 190-195.

      [12] Ferrigo D, Raiola A, Causin R (2015) Fusarium Toxins in Cereals: Occurrence, Legislation, Factors Promoting the Appearance and Their Management. Molecules 21:627. doi:10.3390/molecules21050627

      [13] Kozlovskii AG, Antipova TV, Zhelifonova VP (2015) Biosynthesis of biologically active low-molecular weight compounds by fungi of the genus Penicillium (review). Appl Biochem Microbiol 51:236-241

      [14] Dedyukhina EG, Chistyakova TI, Kamzolova SV, Vinter MV, Vainshtein MB (2012) Arachidonic acid synthesis by glycerolâ€grown Mortierella alpina. Eur J Lipid Sci Technol. 114: 833-841

      [15] Zelenkova NF, Vinokurova NG, Arinbasarov MU (2003) Analysis of secondary metabolites of microscopic fungi of the genus Penicillium by chromatographic techniques. Appl Biochem Microbiol 39:44-54. doi:10.1023/A:1021745926190

      [16] Todorova S, Kozhuharova L (2010) Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J. Microbiol. Biotechnol 26: 1207-1216. doi:10.1007/s11274-009-0290-1

      [17] Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology, 91:181-187. http://dx.doi.org/10.1094/PHYTO.2001.91.2.181.

  • Downloads

  • How to Cite

    N. Shemshura, O., N. Shemsheyeva, Z., K. Sadanov, A., Lozovicka, B., V. Kamzolova, S., & G. Morgunov, I. (2018). Antifungal Potential of Organic Acids Produced by Mortierella Alpina. International Journal of Engineering & Technology, 7(4.38), 1218-1221. https://doi.org/10.14419/ijet.v7i4.38.27767