Electrical Properties of Li-based NASICON Structured Ceramic Electrolytes Substituted With Chromium

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Electrical properties of Li - ion conducting Li1+xCrxSn2-x(PO4)3 ceramic electrolytes with 0 < x < 1 were studied using electrical impedance spectroscopy in the frequency range of 1 Hz to 10 MHz at room temperature. Impedance analysis showed an increase in bulk and grain boundary conductivity with the increment of x up to x = 0.7. The highest bulk and grain boundary conductivity were 6.52 ×10-6 S cm-1 and 1.62 ×10-6 S cm-1 in the system of Li1.7Cr0.7Sn1.3(PO4)3 at room temperature. The charge carrier concentration,   mobile ion concentration, ionic hopping rate and ionic mobility were calculated by fitting the AC conductivity spectra. The ionic hopping rate and ionic mobility of the compound increased with the substitution of chromium due to the extra interstitial Li+ ions in the system.  Additionally, the highest conducting sample with x = 0.7 had a negligible electronic conductivity based on transference number measurements. These results imply that the Li1+xCrxSn2-x(PO4)3 electrolytes obtained in this work can be considered as future candidates for solid state electrolytes.

     

     


  • Keywords


    Lithium, NASICON, Electrolytes, Chromium, Conductivity

  • References


      [1] Takada, K., “Progress in solid electrolytes toward realizing solid-state lithium batteries”, Journal of Power Sources, Vol 394 (2018) pp 74-85.

      [2] Hong, H.Y.P., “Crystal structures and crystal chemistry in the system Na1+ xZr2SixP3− xO12”, Materials Research Bulletin, Vol 11, No 2, (1976) pp 173-182.

      [3] Goodenough, J.B., H.Y.-P. Hong, and J.A. Kafalas, “Fast Na+-ion transport in skeleton structures”, Materials Research Bulletin, Vol 11, No 2, (1976) pp 203-220.

      [4] Aono, H. , Sugimoto, E. , Sadaoka, Y. , Imanaka, N, and Adachi, G. “Ionic conductivity and sinterability of lithium titanium phosphate system”, Solid State Ionics, Vol 40, (1990) pp 38-42.

      [5] Hallopeau, L., Bregiroux, D., Rousse, G., Portehault, D., Stevens, P., Toussaint, G., and Laberty-Robert, C, “Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte” Journal of Power Sources, Vol 378 , (2018), pp 48-52.

      [6] Ramar, V., Kumar, S., Sivakkumar, S. R., and Balaya, P., “NASICON-type La3+substituted LiZr2(PO4)3 with improved ionic conductivity as solid electrolyte”, Electrochimica Acta, Vol 271, (2018), pp120-126.

      [7] Zhang, Y., Chen, K., Shen, Y., Lin, Y., and Nan, Ce-W, “Enhanced lithium-ion conductivity in a LiZr2(PO4)3 solid electrolyte by Al doping”, Ceramics International, Vol 43, (2017), pp S598-S602.

      [8] Mustaffa, N.A., Adnan, S. B. R. S., Sulaiman, M., and Mohamed, N. S., “Low-temperature sintering effects on NASICON-structured LiSn2P3O12 solid electrolytes prepared via citric acid-assisted sol-gel method” , Ionics, Vol 21, No 4, (2015) pp 955-965.

      [9] Mustaffa, N. A. and Mohamed, N. S. , “Properties of stannum-based Li-NASICON-structured solid electrolytes for potential application in electrochemical devices”, Int J Electrochem Sci, Vol 10, (2015), pp 5382-5394.

      [10] Mustaffa, N.A., and Mohamed, N. S., “Zirconium-substituted LiSn2P3O12 solid electrolytes prepared via sol–gel method”, Journal of Sol-Gel Science and Technology, Vol 77, No 3, (2016), pp 585-593.

      [11] Fergus, J.W., “Ion transport in sodium ion conducting solid electrolytes”, Solid State Ionics, Vol 227, (2012) pp. 102-112.

      [12] Knauth, P., “Inorganic solid Li ion conductors: An overview”, Solid State Ionics, Vol 180, No 14, (2009) pp 911-916.

      [13] Padma Kumar, P. and S. Yashonath, “Lithium ion motion in LiZr2(PO4) 3The Journal of Physical Chemistry B, Vol 105, No 29 (2001) pp 6785-6791.

      [14] Martinez, A. , Rojo, J. M. , Iglesias, J. E. , Sanz, J. , and Rojas, R. M, “Formation process of LiSn2(PO4)3, a monoclinically distorted NASICON-type structure.” , Chemistry of materials, Vol 6, No 10 (1994) pp 1790-1795.

      [15] Martinez-Juarez, A. , Rojo, J. M., Iglesias, J. E., and Sanz, J, “Reversible monoclinic-rhombohedral transformation in LiSn2(PO4)3 with NASICON-type structure”, Chemistry of Materials, Vol 7, No 10, (1995) pp 1857-1862.

      [16] Norhaniza, R., R.H.Y. Subban, and N.S. Mohamed,” Effects of Sintering Temperature on the Structure and Conductivity of LiSn2P3O12 Prepared by Mechanical Milling Method”, Advanced Materials Research, Vol 129 m- 131, (2010) pp 338 - 342.

      [17] Cui, W-J. , Yi, J. , Chen, L. , Wang, C-X. , and Xia, Y-Y., “Synthesis and electrochemical characteristics of NASICON-structured LiSn2(PO4)3 anode material for lithium-ion batteries”, Journal of Power Sources, Vol 217, (2012) pp. 77-84.

      [18] Lazarraga, M. G. , Ibañez, J. , Tabellout, M. , and Rojo, J. M., “On the aggregation process of ceramic LiSn2P3O12 particles embedded in Teflon matrix”, Composites science and technology, Vol 64, No 5, (2004) pp 759-765.

      [19] Aono, H. , Sugimoto, E. , Sadaoka, Y. , Imanaka, N. , and Adachi, G, “Electrical properties of sintered lithium titanium phosphate ceramics (Li1+ xMxTi2-x (PO4)3, M3+= Al3+, Sc3+, or Y3+)”, Chemistry Letters, Vol 10, (1990) pp 1825-1828.

      [20] Aono, H. , Sugimoto, E. , Sadaoka, Y. , Imanaka, N. ,and Adachi, G, “Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3)”, Solid State Ionics, Vol 47, No 3-4, (1991) pp 257-264.

      [21] Jenkins, R., X-Ray Techniques: Overview, Encyclopedia of analytical chemistry. 2000: Wiley Online Library.

      [22] Jenkins, R. and R.L. Snyder, Diffraction theory. Introduction to X-ray Powder Diffractometry, Volume 138, 1996, pp 47-95.

      [23] Pérez-Estébanez, M., Isasi-Marín, J., Többens, D. M., Rivera-Calzada, A., and León, C., “A systematic study of Nasicon-type Li1 + xMxTi2 − x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy”, Solid State Ionics, Vol 266, (2014) pp 1-8.

      [24] Mariappan, C.R. and Govindaraj, G., “Conductivity and ion dynamic studies in the Na4.7+ xTi1.3− x(PO4)3.3− x (0≤ x≤ 0.6) NASICON material”, Solid State Ionics, Vol 176, No 13, (2005) pp 1311-1318.

      [25] Yadav, P. and Bhatnagar, M. C., “Structural studies of NASICON material of different compositions by sol–gel method”, Ceramics International, Vol 38, No 2, (2012) pp 1731-1735.

      [26] Xu, X. , Wen, Z. , Gu, Z. , Xu, X. , and Lin, Z., “Preparation and characterization of lithium ion-conducting glass-ceramics in the Li1+ xCrxGe2− x(PO4)3 system”, Electrochemistry Communications, Vol 6, No 12, (2004) pp 1233-1237.

      [27] Fu, J., “Fast Li+ Ion Conduction in Li2O-Al2O3-TiO2p-SiO2-P2O2 Glass-Ceramics”, Journal of the American Ceramic Society, Vol 80, No 7, (1997) pp 1901-1903.

      [28] Chowdari, B. V. R. , Rao, G. V. S., and Lee, G. Y. H, “XPS and ionic conductivity studies on Li2O–Al2O3–(TiO2 or GeO2)–P2O5 glass–ceramics”, Solid State Ionics, Vol 136, (2000) pp 1067-1075.

      [29] Chang, C-M. , Hong, S-H. , and Park, H-M., “Spark plasma sintering of Al substituted LiHf2(PO4)3 solid electrolytes”, Solid State Ionics, Vol 176, No 35, (2005) pp 2583-2587.

      [30] Jonscher, A.K., Chelsea Dielectric Press, 1983, London.

      [31] Almond, D.P., G.K. Duncan, and A.R. West, “The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity”, Solid State Ionics, Vol 8, No 2, (1983) pp159-164.

      [32] Teo, L. P. , Buraidah, M. H. , Nor, A. F. M. , and Majid, S. R., “Conductivity and dielectric studies of Li2SnO3”, Ionics, Vol 18, No 7, (2012) pp 655-665.


 

View

Download

Article ID: 27788
 
DOI: 10.14419/ijet.v7i4.14.27788




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.