Photosensitization of TiO2 Nanotube Arrays with Nanocrystalline Pbs

  • Authors

    • Ying-Chin Lim
    • Nurul Munirah Hamdan
    • Nur Farah Atikah Harun
    • Lim Ying Pei
    2019-12-24
    https://doi.org/10.14419/ijet.v7i4.14.27789
  • Morphology, Photoelectrochemical, Photocurrent, Titania Nanotubes, SILAR.
  • Abstract

    Narrow bandgap lead sulfide (PbS) nanoparticles, which may expand the light absorption range to visible region, have attracted tremendous interest serving as promising sensitizer in coupled semiconductor for photoelectrochemical cell. In this study, PbS were deposited onto titania nanotubes by successive ionic layer adsorption and reaction (SILAR) method. During the SILAR deposition, the growth of PbS onto titania nanotubes (PbS/TNT) had been tuned by tailoring the concentration of the precursor solution. The sample microstructure was characterized using Energy Dispersive X-Ray (EDX), Field Emission Scanning Electron Microscopy (FESEM) and X-Ray Diffraction (XRD). By varying the concentration of precursor solution, size and distribution of PbS nanoparticles could be tuned. Upon growth of PbS onto TNT, all samples showed enhanced photocurrent response ascribed to the changes in microstructure and optical properties of the synthesized samples. At 100 mM solution concentration dipped for 5 SILAR cycles, the sample demonstrated the highest peak photocurrent density of 890 mA/cm2 and a corresponding photoconversion efficiency of 0.55% compared to the as-prepared TNT (36 mA/cm2). The PbS/TNT composite could be considered as an excellent photoelectrode material applied in the solar conversion devices due to its high visible light harvesting capability. 

     

     

     
  • References

    1. [1] Paramasivam, I., Jha, H., Liu, N., & Schmuki, P. (2012). A review of photocatalysis using selfâ€organized TiO2 nanotubes and other ordered oxide nanostructures. Small, 8(20), 3073-3103.

      [2] Crişan, M., Drăgan, N., Crişan, D., Ianculescu, A., Niţoi, I., Oancea, P., Todan, L., Stan, C. & Stănică, N. (2016). The effects of Fe, Co and Ni dopants on TiO2 structure of sol–gel nanopowders used as photocatalysts for environmental protection: A comparative study. Ceramics International, 42(2), 3088-3095.

      [3] Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Gumfekar, S. P. (2016). Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chemical Engineering and Processing: Process Intensification, 109, 178-189.

      [4] Marien, C. B., Cottineau, T., Robert, D., & Drogui, P. (2016). TiO2 nanotube arrays: influence of tube length on the photocatalytic degradation of paraquat. Applied Catalysis B: Environmental, 194, 1-6.

      [5] Dvoranova, D., Brezova, V., Mazúr, M., & Malati, M. A. (2002). Investigations of metal-doped titanium dioxide photocatalysts. Applied Catalysis B: Environmental, 37(2), 91-105.

      [6] Rahna, N. B., Kalarivalappil, V., Nageri, M., Pillai, S. C., Hinder, S. J., Kumar, V., & Vijayan, B. K. (2016). Stability studies of PbS sensitised TiO2 nanotube arrays for visible light photocatalytic applications by X-ray photoelectron spectroscopy (XPS). Materials Science in Semiconductor Processing, 42, 303-310.

      [7] Low, J., Cheng, B., & Yu, J. (2017). Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Applied Surface Science, 392, 658-686.

      [8] Ullah, K., Meng, Z. D., Ye, S., Zhu, L., & Oh, W. C. (2014). Synthesis and characterization of novel PbS–graphene/TiO2 composite with enhanced photocatalytic activity. Journal of Industrial and Engineering Chemistry, 20(3), 1035-1042.

      [9] Luo, Y., Dong, C., Li, X., & Tian, Y. (2015). A photoelectrochemical sensor for lead ion through electrodeposition of PbS nanoparticles onto TiO2 nanotubes. Journal of Electroanalytical Chemistry, 759, 51-54.

      [10] Zhang, Z., Shi, C., Chen, J., Xiao, G., & Li, L. (2017). Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells. Applied Surface Science, 410, 8-13.

      [11] Zhou, R., Huang, Y., Wan, L., Niu, H., Ji, F., & Xu, J. (2017). Constructing aligned single-crystalline TiO2 nanorod array photoelectrode for PbS quantum dot-sensitized solar cell with high fill factor. Journal of Alloys and Compounds, 716, 162-170.

      [12] Zhang, X., Wang, B., & Liu, Z. (2016). Tuning PbS QDs deposited onto TiO2 nanotube arrays to improve photoelectrochemical performances. Journal of Colloid and Interface Science, 484, 213-219.

      [13] Harun, N. F. A., Mohd, Y., Lim, Y. P., Yin, C. Y., & Lim, Y. C. (2018). Understanding the characteristics, enhanced optical and photoelectrochemical performance of copper-loaded titania nanotubes synthesized via successive ionic layer adsorption reaction. Journal of Materials Science: Materials in Electronics, 29(16), 14210-14221.

      [14] Lim, Y. C., Zainal, Z., Tan, W. T., & Hussein, M. Z. (2012). Anodization parameters influencing the growth of titania nanotubes and their photoelectrochemical response. International Journal of Photoenergy, 2012.

      [15] Ayal, A. K., Zainal, Z., Lim, H. N., Talib, Z. A., Lim, Y. C., Chang, S. K., & Holi, A. M. (2017). Photocurrent enhancement of heat treated CdSe-sensitized titania nanotube photoelectrode. Optical and Quantum Electronics, 49(4), 164.

      [16] Du, K., Liu, G., Chen, X., & Wang, K. (2018). Fast charge separation and photocurrent enhancement on black TiO2 nanotubes co-sensitized with Au nanoparticles and PbS quantum dots. Electrochimica Acta, 277, 244-254.

      [17] Zhou, C., Geng, Y., Chen, Q., Xu, J., Huang, N., Gan, Y., & Zhou, L. (2016). A novel PbS/TiO2 composite counter electrode for CdS quantum dot-sensitized ZnO nanorods solar cells. Materials Letters, 172, 171-174.

  • Downloads

  • How to Cite

    Lim, Y.-C., Munirah Hamdan, N., Farah Atikah Harun, N., & Ying Pei, L. (2019). Photosensitization of TiO2 Nanotube Arrays with Nanocrystalline Pbs. International Journal of Engineering & Technology, 7(4.14), 560-564. https://doi.org/10.14419/ijet.v7i4.14.27789

    Received date: 2019-02-22

    Accepted date: 2019-02-22

    Published date: 2019-12-24