Effects of EC Plastisizer and SiO2 Nano-Filler on Electrical and Thermal Properties of Chitosan-G-PMMA based Solid Polymer Electrolytes

  • Authors

    • Nor Kartini. Jaafar
    • Ab Malik Marwan Ali
    • Muhamad Zu Azhan Yahya
    • Rosnah Zakaria
    • Siti Zafirah Zainal Abidin
    2019-12-24
    https://doi.org/10.14419/ijet.v7i4.14.27791
  • Chitosan-g-PMMA, Grafting, Gamma radiation, Ionic conductivity, Plastisizer, Composited, Glass temperature
  • Abstract

    Composite grafted polymer electrolyte based on chitosan grafted poly(methyl methacrylate) (Ch-g-PMMA) have been prepared and investigated. The lithium triflouromethanesulfate salt (LiCF3SO3 or LiTf), ethylene carbonate (EC) and SiO2 are applied as a salt, plasticizer and ceramic filler, to the polymer host system. Impedance spectroscopy was performed at room temperature. The highest conductivity of 1.63 x 10-4 Scm-1 was obtained for the grafted polymer with 50 wt. % of LiCF3SO3 and enhanced to 2.23 x 10-4 Scm-1 with the addition of 30 wt. % EC. The conductivity is further enhanced to 4.21 x 10-4 Scm−1 with the addition of 6 wt. % SiO2. Both additives caused a reduction of the Ch-g-PMMA crystalline phase content and increased segmental flexibility leading to conductivity enhancement. 

     

  • References

    1. [1] Buchi, F.N., Gupta, B., Haas, O. and Scherer,G.G. (1995). Performance of Differently Crossâ€Linked, Partially Fluorinated Proton Exchange Membranes in Polymer Electrolyte Fuel Cells,J. Electrochem. Soc. 142, 3044

      [2] Scherer,G.G.,Momose, T. and Tomiie. K. (1988). Membrane-water electrolysis cells with a fluorinated cation exchange membranes J Electrochem. Soc. 135, 3071.

      [3] Muzzarelli, R. A. A.; Muzzarelli, C. Adv. Polym. Sci. 2005, 186, 151,

      [4] Yahya, M . Z . A., Ali, A . M .M., Mohammat, M.F., Ibrahim, S.C., Darus, Z.M., Hanafiah, M.A.K.M., Mustafa, M. and Harun, M.K. (2006). Ionic conduction model in salted chitosan membranesplasicized with fatty acid , Journal of Applied Sciences 6(6) 1287-

      [5] 1291.

      [6] Yahya, M.Z.A and Arof A.K. (2003). Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes, Eur. Polym. J.,39,897.

      [7] Yahya, M.Z.A. and Arof, A.K. (2004). Conductivity and X-rayphotoelectron studies on lithium acetate doped chitosan films, Carbohydrate Polymers 55, 95-100.

      [8] E. Bucio, R. Aliev, G. Burillo, Radiation Physics and Chemistry 52 (1998) 193

      [9] A.U. Ahmed, W.H. Rapson, Journal of Polymer Science Part A 9 (1971) 2129.

      [10] Appetecchi, G. B, Croce, F. and Scrosati, B. (1995). Kinetics and stability of the lithiumelectrode in poly(methylmethacrylate)-based gel electrolytes, Electrochim. Acta 40, 991.

      [11] Ramesh, S. and Wen L. C. (2010) . Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA–LiCF3SO3–SiO2, Ionics 16, 255-262.

      [12] Tan Winie, Hanif, N.S.M. , Chan, C.H., Arof, A.K. (2014). Effect of the surface treatment of the TiO2 fillers on the properties of hexanoyl chitosan/polystyrene blend - based composite polymer electrolytes. Ionic 20:347-352.

      [13] Kumar,,R., Sharmaa,S., Pathakb,D., Dhiman,N., Arorac,N. (2017). Ionic conductivity, FTIR and thermal s tudies of nano - composite plasticized proton conducting polymer electrolytes , Solid State Ionics 305, 57–62.

      [14] Morales, E. and Acosta J .L. (1997). Thermal and electrical characterization of plasticized polymer electrolytes based on polyethers and polyphosphazene blends, Solid State Ionics 96 , 99-106.

      [15] MacFarlane,D.R., Sumn,J., Meakin,P., F asoulopoulos, P., Hey,J., Forsyth, M. (1995). Stucture-property relationships in plasticized solid polymer electrolytes. Electrochimica Acta 40 , 2131-2136.

      [16] Wieczorek, W., Stevens, J.R. Florjanczyk, Z. (1996) . Composit polyether based solid electrolytes. The Lewis a base approach, Solid State Ionics 85,76.

      [17] Soquet, J.L.,.Levy, M. and Duclot, M. (1994). A single microscopicapproach for ionic transport in glassy and polymer electrolytes, Solid State Ionics 70-71, 337-345

      [18] Ramesh, S. and Arof, A.K. (2001) . Structural, thermal and electro chemical cell characteristics of poly (vinyl chloride)-based polymer electrolytes, Journal of Power Sources 99 , 41-47.

      [19] Miyamoto, T., Shibayama, K. (1973). Freeâ€volume model for ionic conductivity in polymers, J Appl Phys 44,5372.

      [20] Ratner, M. and Shriver, D..F (1988). Ion transport in solvent-free polymers, Chem Rev (Washington, DC) 88:109

      [21] Mano, V. Felisberti, M.I., Matencio, T., De Paoli, M.A. (1996) . Thermal, mechanical and electrochemical behaviour of poly (vinyl chloride)/polypyrrole blends (PVC/PPy), Polymer 37, 5165-5170.

      [22] Ahmad S., Bohidar H . B., Ahmad S, Agnihotry S . A. ( 2006). Role of fumed silica on ion conduction and rheology in nanocomposite polymeric electrolytes, Polymer 47,3583–3590.

  • Downloads

  • How to Cite

    Kartini. Jaafar, N., Malik Marwan Ali, A., Zu Azhan Yahya, M., Zakaria, R., & Zafirah Zainal Abidin, S. (2019). Effects of EC Plastisizer and SiO2 Nano-Filler on Electrical and Thermal Properties of Chitosan-G-PMMA based Solid Polymer Electrolytes. International Journal of Engineering & Technology, 7(4.14), 569-573. https://doi.org/10.14419/ijet.v7i4.14.27791

    Received date: 2019-02-22

    Accepted date: 2019-02-22

    Published date: 2019-12-24