Maximum Likelihood Based Approach for Weibull’s Distribution Parameters Estimation for Wind Energy Applications

  • Authors

    • Adekunlé Akim Salami University of Lome
    • Koffi Mawugno Kodjo University of Lome
    • Ayité Sénah Akoda Ajavon University of Lome
    • Koffi Agbeblewu Dotche University of Lome
    • Koffi-Sa Bédja University of Lome
    2019-06-30
    https://doi.org/10.14419/ijet.v7i4.27832
  • Comparative Evaluation, Even Bins Wind Speed Series, Maximum Likelihood Method (MLM), Odd Bins Wind Speed Series, Statistical Analysis.
  • Abstract

    In this article, a new computational approach is proposed to estimate the Weibull’s distribution parameters. The method is dependent on the Maximum Likelihood (MLM) using the even and odd classes of wind speed’s distribution. This new approach is referred to either as Maximum Likelihood with Odd Bins time series Method (MLOBM) or Maximum Likelihood with Even Bins time series Method (MLEBM). It comprises the data size reduction, which in turns may lead to a fast processing time. This method was evaluated in a comparative analysis of MLOBM and MLEBM against the proposed theoretical model. The obtained results on the mean wind speed, standard deviation, and power density on monthly and annual scales for different geographical locations may indicate that the MLOBM or MLEBM may give a better estimate of the Weibull parameters with a low error.

     

     

  • References

    1. [1] D. Y. C. Leung and Y. Yang, “Wind energy development and its environmental impact: A reviewâ€, Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 1031–1039, 2012. https://doi.org/10.1016/j.rser.2011.09.024.

      [2] A. N. Celik, “Energy output estimation for small-scale wind power generators using Weibull-representative wind dataâ€, J. Wind Eng. Ind. Aerodyn., vol. 91, no. 5, pp. 693–707, 2003. https://doi.org/10.1016/S0167-6105(02)00471-3.

      [3] L. Lu, H. Yang, and J. Burnett, “Investigation on wind power potential on Hong Kong islands: an analysis of wind power and wind turbine characteristicsâ€, Renew. Energy, vol. 27, no. 1, pp. 1–12, 2002. https://doi.org/10.1016/S0960-1481(01)00164-1.

      [4] A. Genc, M. Erisoglu, A. Pekgor, G. Oturanc, A. Hepbasli, and K. Ulgen, “Estimation of wind power potential using Weibull distributionâ€, Energy Sources, vol. 27, no. 9, pp. 809–822, 2005. https://doi.org/10.1080/00908310490450647.

      [5] S. A. Akdag and Ö. Güler, “Calculation of wind energy potential and economic analysis by using Weibull distribution: A case study from Turkey. Part 1: Determination of Weibull parametersâ€, Energy Sources, Part B, vol. 4, no. 1, pp. 1–8, 2009. https://doi.org/10.1080/15567240802532841.

      [6] B. Safari, “Modeling wind speed and wind power distributions in Rwandaâ€, Renew. Sustain. Energy Rev., vol. 15, no. 2, pp. 925–935, 2011. https://doi.org/10.1016/j.rser.2010.11.001.

      [7] A. D. Sahin, “Progress and recent trends in wind energyâ€, Prog. Energy Combust. Sci., vol. 30, no. 5, pp. 501–543, 2004. https://doi.org/10.1016/j.pecs.2004.04.001.

      [8] A. A. Salami, A. S. A. Ajavon, M. K. Kodjo, and K.-S. Bedja, “Contribution to improving the modeling of wind and evaluation of the wind potential of the site of Lome: Problems of taking into account the frequency of calm windsâ€, Renew. Energy, vol. 50, pp. 449–455, 2013. https://doi.org/10.1016/j.renene.2012.06.057.

      [9] S. H. Pishgar-Komleh, A. Keyhani, and P. Sefeedpari, “Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran)â€, Renew. Sustain. Energy Rev., vol. 42, pp. 313–322, 2015. https://doi.org/10.1016/j.rser.2014.10.028.

      [10] A. S. A. Ajavon, A. A. Salami, M. K. Kodjo, and K.-S. Bédja, “Comparative characterization study of the variability of wind energy potential by wind direction sectors for three coastal sites in Lom{é}, Accra and Cotonouâ€, J. Power Technol., vol. 95, no. 2, pp. 134–142, 2015.

      [11] Pallabazzer R., “Parametric analysis of wind siting efficiencyâ€, J. Wind Eng. Indus. Aerod. 2003; 91:1329–52. https://doi.org/10.1016/j.jweia.2003.08.002.

      [12] S. Mathew, Wind energy: Fundamentals, resource analysis and economics. 2007.

      [13] H. S. Bagiorgas, M. Giouli, S. Rehman, and L. M. Al-Hadhrami, “Weibull parameters estimation using four different methods and most energy-carrying wind speed analysisâ€, Int. J. Green Energy, vol. 8, no. 5, pp. 529–554, 2011. https://doi.org/10.1080/15435075.2011.588767.

      [14] Akdag S. A, Dinler A., “A new method to estimate Weibull parameters for wind energy applicationsâ€, Energy Convers Manage 2009;50:1761–6. https://doi.org/10.1016/j.enconman.2009.03.020.

      [15] Jowder F. A. L., “Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrainâ€, Appl Energy 2009;86:538–45. https://doi.org/10.1016/j.apenergy.2008.08.006.

      [16] Chang T. P. “Performance comparison of six numerical methods in estimating Weibull parameters for wind energy applicationâ€, Appl. Energy 2011; 88:272–82. https://doi.org/10.1016/j.apenergy.2010.06.018.

      [17] P. A. C. Rocha, R. C. de Sousa, C. F. de Andrade, and M. E. V. da Silva, “Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazilâ€, Appl. Energy, vol. 89, no. 1, pp. 395–400, 2012. https://doi.org/10.1016/j.apenergy.2011.08.003.

      [18] S. A. Ahmed, “Comparative study of four methods for estimating Weibull parameters for Halabja, Iraqâ€, Int. J. Phys. Sci., vol. 8, no. 5, pp. 186–192, 2013.

      [19] Azad AK, Rasul GM, Yusaf T. “Statistical diagnosis of the best Weibull methods for wind power assessment for agricultural applicationsâ€, Energies 2014; 7: 3056-3085. https://doi.org/10.3390/en7053056.

      [20] Arslan T, Bulut Y. M., Yavuz A. A. Comparative study of numerical methods for determining Weibull parameters for wind energy potentialâ€, Renew. Sust. Energy Rev. 2014; 40:820-825. https://doi.org/10.1016/j.rser.2014.08.009.

      [21] George F. A., “Comparison of shape and scale estimators of the two-parameter Weibull distributionâ€, J. Modern Appl. Statist. Methods 2014; 13:23–35. https://doi.org/10.22237/jmasm/1398916920.

      [22] Kidmo D. K., Danwe R, Doka S. Y., Djongyang N., “Statistical analysis of wind speed distribution based on six Weibull Methods for wind power evaluation in Garoua, Cameroonâ€, Revue des Energies Renouvelables 2015; 18(1):105–25.

      [23] Ilhan Usta, An innovative estimation method regarding Weibull parameters for wind energy applicationsâ€, Energy 106 (2016) 301-314 https://doi.org/10.1016/j.energy.2016.03.068.

      [24] M. J. Kasra Mohammadi, Omid Alavi, Ali Mostafaeipour, Navid Goudarzi, “Assessing different parameters estimation methods of Weibull distribution to compute wind power density,†Energy Convers. Manag., vol. 108, no. November, pp. 322–335, 2016. https://doi.org/10.1016/j.enconman.2015.11.015.

      [25] S. H. Zanakis and J. Kyparisis, “A review of maximum likelihood estimation methods for the three-parameter Weibull distributionâ€, J. Stat. Comput. Simul. vol. 25, no. 1–2, pp. 53–73, 1986. https://doi.org/10.1080/00949658608810924.

      [26] A. J. Watkins, “Review: Likelihood method for fitting weibull log-linear models to accelerated life-test dataâ€, Reliab. IEEE Trans., vol. 43, no. 3, pp. 361–365, 1994. https://doi.org/10.1109/24.326426.

      [27] F. Q. Yuan, A. Barabadi, J. M. Lu, A. H. S. Garmabaki, “Performance Evaluation for Maximum Likelihood and Moment Parameter Estimation Methods on Classical Two Weibull Distributionâ€, Proceedings of the 2015 IEEE IEEM. https://doi.org/10.1109/IEEM.2015.7385758.

      [28] C. G. Justus, W. R. Hargraves, A. Mikhail, and D. Graber, “Methods for estimating wind speed frequency distributionsâ€, J. Appl. Meteorol., vol. 17, no. 3, pp. 350–353, 1978. https://doi.org/10.1175/1520-0450(1978)017<0350:MFEWSF>2.0.CO;2.

      [29] E. S. Takle and J. M. Brown, “Note on the use of Weibull statistics to characterize wind-speed dataâ€, J. Appl. Meteorol., vol. 17, no. 4, pp. 556–559, 1978. https://doi.org/10.1175/1520-0450(1978)017<0556:NOTUOW>2.0.CO;2.

      [30] E. K. Akpinar and S. Akpinar, “An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristicsâ€, Energy Convers. Manag., vol. 46, no. 11, pp. 1848–1867, 2005. https://doi.org/10.1016/j.enconman.2004.08.012.

      [31] K. Ulgen and A. Hepbasli, “Determination of Weibull parameters for wind energy analysis of Izmir, Turkeyâ€, Int. J. Energy Res., vol. 26, no. 6, pp. 495–506, 2002. https://doi.org/10.1002/er.798.

      [32] B. K. Gupta, “Weibull parameters for annual and monthly wind speed distributions for five locations in India,†Sol. Energy, vol. 37, no. 6, pp. 469–471, 1986. https://doi.org/10.1016/0038-092X(86)90039-3.

      [33] S. Al-yahyai, Y. Charabi, A. Gastli, and S. Al-alawi, “Assessment of wind energy potential locations in Oman using data from existing weather stationsâ€, Renew. Sustain. Energy Rev., vol. 14, no. 5, pp. 1428–1436, 2010. https://doi.org/10.1016/j.rser.2010.01.008.

      [34] A. W. Dahmouni, M. Ben Salah, F. Askri, C. Kerkeni, and S. Ben Nasrallah, “Assessment of wind energy potential and optimal electricity generation in Borj-Cedria, Tunisiaâ€, Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 815–820, 2011. https://doi.org/10.1016/j.rser.2010.07.020.

      [35] R. O. Fagbenle, J. Katende, O. O. Ajayi, and J. O. Okeniyi, “Assessment of wind energy potential of two sites in North-East, Nigeriaâ€, Renew. Energy, vol. 36, no. 4, pp. 1277–1283, 2011. https://doi.org/10.1016/j.renene.2010.10.003.

      [36] S. Rizvi, M. R. Kazimi, S. M. Z. Iqbal, and A. A. Qidwai, “Comparison of Wind Energy Potential using Different Mathematical Methods for Pasni, (Pakistan)â€, vol. 2, no. 11, 2015.

      [37] A. C. Cohen, “Maximum likelihood estimation in the Weibull distribution based on complete and on censored samplesâ€, Technometrics, vol. 7, no. 4, pp. 579–588, 1965. https://doi.org/10.1080/00401706.1965.10490300.

      [38] M. A. Nielsen, “Parameter estimation for the two-parameter Weibull distributionâ€, Brigham Young University, 2011.

      [39] E. G. Pavia and J. J. O’Brien, “Weibull statistics of wind speed over the oceanâ€, J. Clim. Appl. Meteorol., vol. 25, no. 10, pp. 1324–1332, 1986. https://doi.org/10.1175/1520-0450(1986)025<1324:WSOWSO>2.0.CO;2.

      [40] E. J. Gumbel, “Statistics of Extremesâ€, Columbia University Press, New York 375, 1958. https://doi.org/10.7312/gumb92958.

      [41] N. Fichaux, “Evaluation du potentiel éolien offshore et imagerie satellitaleâ€, Ecole Nationale Supérieure des Mines de Paris, 2003.

      [42] W. Weibull, “A statistical distribution function of wide applicabilityâ€, J. Appl. Mech., vol. 103, p. 33, 1951.

      [43] R. J. Barthelmie and S. C. Pryor, “Can satellite sampling of offshore wind speeds realistically represent wind speed distributions?â€, J. Appl. Meteorol., vol. 42, no. 1, pp. 83–94, 2003. https://doi.org/10.1175/1520-0450(2003)042<0083:CSSOOW>2.0.CO;2.

      [44] E. L. Petersen, I. Troen, S. Frandsen, K. Hedegaard, “Wind Atlas for Denmarkâ€, Risoe Natl. Lab. Roskilde, Danemark, p. 229, 1981.

      [45] I. Troen, E. L. Petersen, “European wind atlasâ€, Risoe Natl. Lab. Roskilde, Danemark, p. 656, 1989.

      [46] N. O. Jensen, E. L. Petersen, I. Troen, “World climate applications programme : extrapolation of mean wind statistics with special regard to wind energy applicationsâ€, World Meteorol. Organ. WMO/TD-No. 15, 1984.

      [47] I. Fyrippis, P. J. Axaopoulos, and G. Panayiotou, “Wind energy potential assessment in Naxos Island, Greeceâ€, Appl. Energy, vol. 87, no. 2, pp. 577–586, 2010. https://doi.org/10.1016/j.apenergy.2009.05.031.

      [48] “http://Wheather.uwyo.edu/surface/meteogram/.â€

  • Downloads

  • How to Cite

    Akim Salami, A., Mawugno Kodjo, K., Sénah Akoda Ajavon, A., Agbeblewu Dotche, K., & Bédja, K.-S. (2019). Maximum Likelihood Based Approach for Weibull’s Distribution Parameters Estimation for Wind Energy Applications. International Journal of Engineering & Technology, 7(4), 6631-6648. https://doi.org/10.14419/ijet.v7i4.27832

    Received date: 2019-02-22

    Accepted date: 2019-06-12

    Published date: 2019-06-30