Stocks Allocation in Portfolio Selection using Fuzzy Soft Set
-
2018-11-30 https://doi.org/10.14419/ijet.v7i4.26.27940 -
Portfolio Selection, Decision-Making Approach, Fuzzy number, Multi Objective Programming (MOP), Genetic Algorithm (GA), Soft Set. -
Abstract
Return and risk are uncertain parameters for stock market. Fuzzy Soft Set is a suitable approach to handle the uncertaintiesvagueness and/or imprecisionof the market position and permits the data representation viably. The primary focus of paper is to construct the diversified portfolio of the stocks with the help of Fuzzy Soft Set (FSS) model.HereinFSS model is used for ranking the stocks viadecision making factor (DMF) and decision ranking factor (DRF).On the basis of this ranking7 stocks are picked up out of 30 stocks for construction of optimal portfolio. To solve optimization problem, Genetic Algorithm isused for stocks allocation of the optimal portfolio. The data set analysedin this model is taken from Bombay Stock Exchange (BSE) Mumbai, India and a real application are given in order to show the potentiality of the approach
Â
Â
Â
-
References
[1] Aktas, H., &Çagman, N. (2007). Soft sets and soft groups. Information Sciences: an International Journal, 177, 2726-2735.
[2] Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 64, 87-96.
[3] Basu, T.M., Mahapatra, N. K., &Mandal, S. K. (2012). A balanced solution of a soft set based decision making problem in medical science. Applied Soft Computing, 12, 3260-3275.
[4] Bellman, R., &Zadeh, L. A. (1970). Decision making in a fuzzy environment. Management Science, 17, 141–164.
[5] Cagman, N., &Enginoglu, S. (2010). Soft set theory and uni-int decision making. European Journal of Operational Research, 207,848–855.
[6] Cagman, N., &Enginoglu, S. (2010). Soft matrix theory and its decision-making. Computers and Mathematics with Applications, 59, 3308–3314.
[7] Das, P. K., &Borgohain, R. (2010). An application of fuzzy soft set in medical diagnosis using fuzzy arithmetic operations on fuzzy number. SIBCOLTEJO, 5, 107-116.
[8] Ehrgott, M., Klamroth, K., &Schwehm, C. (2004). An MCDM approach to portfolio optimization. European Journal of Operational Research, 155, 752–770.
[9] Fang, Y., Lai, K. K., & Wang, S.Y.(2006). Portfolio rebalancing model with transaction costs based on fuzzy decision theory. European Journal of Operational Research, 175, 879–893.
[10] Fang, Y., Xue, R., & Wang, S. (2009). A Portfolio Optimization Model with Fuzzy Liquidity Constrains. International Joint Conference on Computational Sciences and Optimization. doi :10.1109/CSO.20090.362
[11] Feng, F., Jun, Y. B., Liu, X., & Li, L.(2010). An adjustable approach to fuzzy soft set based decision making. Journal of Computational and Applied Mathematics, 234, 10- 20.
[12] Bhattacharyya, R., Hossain, S. A., & Kar, S. (2014). Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection. Journal of King Saud University-Computer and Information Sciences, 26(1), 79-87.
[13] Gau, W. L., &Buehrer, D. J. (1993). Vague sets. IEEE Transactions on Systems, Man, and Cybernetics, 23, 610-614.
[14] Armananzas, R., & Lozano, J. A. (2005, September). A multiobjective approach to the portfolio optimization problem. In Evolutionary Computation, 2005. The 2005 IEEE Congress on (Vol. 2, pp. 1388-1395). IEEE.â€
[15] Faia, R., Pinto, T., & Vale, Z. (2016). Dynamic fuzzy clustering method for decision support in electricity markets negotiation. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 5(1), 23-35.â€
[16] Gupta, L.C., Jain, N., Choudhury, U. K., Gupta, S., Sharma, R., Kaushik, P., Chopra, M., Tyagi, M. K., & Jain, S. (2005). Indian Household Investors survey- 2004 Society for Capital Market Research & Development, New Delhi, India.
[17] Gupta, P., Mehlawat, M. K., &Saxena, A. (2008). Asset portfolio optimization using fuzzy mathematical programming. Information Science, 178, 1734-1755.
[18] Herawan, T., &Deris, M. M. (2011). A soft set approach for association rules mining. Knowledge-Based Systems, 24, 186–195.
[19] Holland, J. H. (1975). Adaption in Natural and Artificial Systems, University of Michigan: MIT Press.
[20] Jha, M., &Srivastava, N. (20`13). Portfolio Rebalancing Model Using Fuzzy Optimization. International Journal of Scientific Engineering and Research (IJSER), 1(4), 59-70.
[21] Jun, Y. B., & Yang, X. B.(2011). A note on the paper “Combination of interval-valued fuzzy set and soft setâ€. Computers and Mathematics with Applications, 61, 1468-1470.
[22] Kalayathankal, S. J., & Singh, G. S.(2010). A fuzzy soft flood alarm model. Mathematics and Computers in Simulation, 80, 887-893.
[23] Kong, Z., Gao, L. Q., & Wang, L. F. (2009). Comment on a fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 223, 540-542.
[24] Roy, A. R., & Maji, P. K. (2007). A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203(2), 412-418.â€
[25] Laraschj, A., &Tettamanzi, A. (1996). An evolutionary algorithm for portfolio selection within the downside risk framework. Forcasting Financial Markets, John Wiley and Sons, 275-285.
[26] Linstone, H.A., &Turoff, M. (1975). The Delphi Method: Techniques and Applications. Massachusetts: Addison Wesley.
[27] Maji, P. K., Biswas, R., & Roy, A. R. (2001). Fuzzy soft sets. Journal of fuzzy mathematics, 9, 589–602.
[28] Maji, P. K., Biswas, R., & Roy, A. R. (2003). Soft set theory. Computers and Mathematics with Applications, 45, 555–562.
[29] Maji, P. K., & Roy, A. R. (2002). An application of soft sets in a decision making problem. Computers and Mathematics with Applications, 44, 1077-1083.
[30] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.
[31] Markowitz, H. (1959). Portfolio Selection: Efï¬cient Diversiï¬cation of Investments. New York: John Wiley& Sons.
[32] Min, W. K. (2012). Similarity in soft set theory. Applied Mathematics Letters, 25, 310-314.
[33] Molodtsov, D. (1999). Soft set theory-first results. Computers and Mathematics with Application, 37, 19–31.
[34] Mushif, M. M., Sengupta, S., & Roy, A. K., (2006). Texture classification using a novel soft set theory based classification algorithm. Proceedings of the7th Asian conference on computer vision held in Hyderabad, India, 1, 246-254.
[35] Pawlak, Z. (1982). Rough sets. International Journal of Information and Computer Science, 11, 341-356.
[36] Rajarajeswari, P., &Dhanalakshmi, P. (2012). Soft set theory in medical diagnosis using trapezoidal fuzzy number. International Journal of computer Application, 57, 0975-8887.
[37] Thakur, G. S. M., Bhattacharyya, R., & Sarkar, S. (2018). Stock portfolio selection using Dempster–Shafer evidence theory. Journal of King Saud University-Computer and Information Sciences, 30(2), 223-235.â€
[38] Sharpe, W. F. (1964). Capital stock prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19, 425-442.
[39] Simaan, Y. (1997). Estimation risk in portfolio selection: The mean variance model versus the mean absolute deviation model. Management Science, 43, 1437-1446.
[40] Speranza, M. G. (1993). Linear programming model for portfolio optimization. Finance, 14, 107–123
[41] Thakur, G. S. (2014). Fuzzy Soft Traffic Accident Alert Model.National Academy Science Letters, 37, 261–268.
[42] Xiao, Z., Gong, K., &Zou, Y. (2009). A combined forecasting approach based on fuzzy soft sets. Journal of Computational and Applied Mathematics, 228, 326-333.
[43] Yang, X. B., Lin, T. Y., Yang, J.Y., Li, Y., & Yu, D.Y. (2009). Combination of interval-valued fuzzy set and soft set. Computers and Mathematics with Applications, 58, 521-527.
[44] Yong, Y., Line, Z., Xia T., &Hao, C. (2013). Similarity Coefficient in soft set Theory. Fuzzy Information and Engineering, 5, 119-126.
[45] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.
[46] Zadeh, L. A. (1978). (Negoita et al., 1978)Fuzzy Sets and Systems, 1, 3–28.
[47] Zou, Y., & Xiao, Z. (2008). Data analysis approaches of soft set under incomplete information. Knowledge-Based Systems, 21, 941-945.
-
Downloads
-
How to Cite
Harode, S., Jha, M., Das, S., & Srivastava, N. (2018). Stocks Allocation in Portfolio Selection using Fuzzy Soft Set. International Journal of Engineering & Technology, 7(4.26), 297-304. https://doi.org/10.14419/ijet.v7i4.26.27940Received date: 2019-02-25
Accepted date: 2019-02-25
Published date: 2018-11-30