Diagnose Mutations Causes Î’-Thalassemia: Biomining Method Using an Optimal Neural Learning Algorithm

  • Authors

    • Ayad Ghany Ismaeel
    2019-03-01
    https://doi.org/10.14419/ijet.v8i1.11.28082
  • Biomining, Backpropagation, Batch Backpropagation, β-thalassemia, Conjugate Gradient Descent, Genome, ITHALNET-IthaGenes database, Mutation, Neural Learning Algorithm, Proteome, Quick Propagation.
  • Abstract

    The problems in genome and proteome classification of mutations causing a thalassemia are synthesis, e.g. which thalassemia's database will choose? and then the technique that used in biomining to classify mutations causing thalassemia who can say is effective/optimal. This paper proposed genomics classification for β-thalassemia’s mutations in ITHALNET-IthaGenes database [1] (which is a modern and more comprehensive comparing to other  thalassemia databases about  63% of thalassemia’s  mutations) using data biomining method based on multiple  neural network learning algorithms (Conjugate Gradient Descent, quick propagation, online backpropagation BP and batch BP algorithm).  The experimental results based on architecture of BP [457-228-1] with (1000) iteration shows conjugate gradient descent is optimal biomining technique comparing to other techniques  of diagnosis mutation of B-thalassemia, which shows in training stage with error improvement= 5.20E-08 and testing stage Correlate= 0.999601 &  R-Squared= 0.9992, in quick propagation gives error improvement= 5.20E-08, Correlate= 0.997086 &  R-Squared= 0.994173,  in Batch BP reveals error improvement = 0.257249, Correlate= 0.975762 &  R-Squared= 0.931719,  finally the online propagation  error improvement= 0.000013 and testing stage Correlate= 0.975277 &  R-Squared= 0.900057).

     

     

  • References

    1. [1] â€IthaGenes: Homepageâ€, supported by European Union, created at period (2006-2008). URL: http://www.ithanet.eu/db/ithagenes

      [2] Stefan Duffner, Christophe Garcia , “An Online Backpropagation Algorithm with Validation Error-Based Adaptive Learning Rate“, Springer Link, International Conference on Artificial Neural Networks ICANN 2007, DOI: 10.1007/978-3-540-74690-4_26, pp 249-258. URL:https://link.springer.com/chapter/10.1007/978-3-540-746904_26

      [3] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification, Chapter 6: Multi-layer feedforward neural networks, ISBN: 978-0-471-05669-0, 2nd Edition WILEY, November 2000. URL: http://eu.wiley.com/WileyCDA/WileyTitle/productCd0471056693.html

      [4] João Carlos Negrão Ventura, “NEURAL NETWORKS IMPLEMENTATION IN PARALLEL DISTRIBUTED PROCESSING SYSTEMSâ€, Departamento de Informática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa. URL: http://venturas.org/sites/venturas.org/files/mydmbp.pdf

      [5] Clemens-Alexander Brust and el. at. , “Evaluation of QuickProp for Learning Deep Neural Networks -- A Critical Reviewâ€, June 2016. URL: https://www.researchgate.net/publication/303969910

      [6] Altug Akay, Andrei Dragomir and el at, “A Data Mining Approach for Investigating Social and Economic Geographical Dynamics of Thalassemia's Spread “, Published in: IEEE Transactions on Information Technology in Biomedicine ( Volume: 13, Issue: 5, Sept. 2009 ), DOI: 10.1109/TITB.2009.2020062. Pages 774-780. http://ieeexplore.ieee.org/document/4814673/

      [7] Ou XB, Zhang L and el at, “Diagnosis of thalassemia by using genechipsâ€, Zhonghua Er Ke Za Zhi. 2005 Jan;43(1):31-4. https://www.ncbi.nlm.nih.gov/pubmed/15796804

      [8] DOMINGOS, Ana L. B. et al. “The profile of beta thalassemia obtained by data mining analysis in a databaseâ€, Revista Brasileira de Hematologia e Hemoterapia ABHH, vol.32, n1,P 78-79. ISSN 15168484. (2010). http://www.scielo.br/pdf/rbhh/v32n1/a18v32n1.pdf

      [9] Prof. Titus H.J. Huisman, Mrs. Marianne F.H. Carver and el at, “HbVar: A database of Human Hemoglobin Variants and Thalassemiasâ€, 1990s. URL: http://globin.bx.psu.edu/cgi-bin/hbvar/query_vars3

      [10] Pierre de Lacaze, “Reinforcement Learning and Artificial Neural Nets“, September 20th, 2016. rpl@lispnyc.org , pierre@shareablee.com . URL: https://www.slideshare.net/delaray/reinforcement-learning-and-artificial-neural-nets

      [11] A. Gh. Ismaeel, and R. Zuhair Yousif. " Novel Mining of Cancer via Mutation in Tumor Protein P53 using Quick Propagation Network", International Journal of Computer Science and Electronics Engineering (IJCSEE),vol.3, issue 2, pp.121-126, (2015).

      [12] A. Gh. Ismaeel, and A. A. Ablahad, “Novel Method for Mutational Disease Prediction using Bioinformatics Techniques and Backpropopagation Algorithmâ€, IRACST- Engineering Science and Technology: An International Journal Vol. 3, pp. 150-156, 2013, (online).

      [13] A. Gh. Ismaeel, and A. A. Ablahad, “Enhancement of a Novel Method for Mutational Disease Prediction using Bioinformatics Techniques and Backpropagation Algorithmâ€, international journal of scientific & engineering research, vol. 4, issue 6, 2013.

  • Downloads

  • How to Cite

    Ghany Ismaeel, A. (2019). Diagnose Mutations Causes Î’-Thalassemia: Biomining Method Using an Optimal Neural Learning Algorithm. International Journal of Engineering & Technology, 8(1.11), 1-8. https://doi.org/10.14419/ijet.v8i1.11.28082

    Received date: 2019-03-01

    Accepted date: 2019-03-01

    Published date: 2019-03-01