Thermal Energy Recovery from a Grid Connected Photovoltaic-Thermal (PVT) System Using Water as Working Fluid

  • Authors

    • Alhassan Salami Tijani
    • Amer Farhan Bin Md Tahir
    • Jeeventh Kubenthiran
    • Baljit Singh Bhathal Singh
    2018-12-09
    https://doi.org/10.14419/ijet.v7i4.36.28148
  • Photovoltaic (PVT), Thermal Efficiency, Absorber Collector, Pressure Drop
  • A Photovoltaic Thermal collector (PVT) is a combination of Photovoltaic (PV) and Thermal (T) collector. Many studies have tried to improve the electrical efficiency and thermal efficiency of this PVT system. The efficiency is influenced by many system design parameters and operating conditions such as the absorber temperature, velocity and pressure distributions. In this study, two new design concepts of absorber configuration of thermal collector have been investigated. This study also provides an important opportunity to advance the understanding of the effect of different geometrical configuration on the performance of the absorber.  Simulations were performed using ANSYS FLUENT 16.0 for both absorbers to determine the best absorber design that gives the highest thermal efficiency. Based on the simulations performed, perpendicular serpentine absorber proved to be the best design with the higher thermal efficiency of 56.45%.

     

     
     
  • References

    1. [1] Mekhilef S, Saidur R, Safari A. A review on solar energy use in industries. Renew Sustain Energy Rev 2011;15:1777–90. doi:10.1016/j.rser.2010.12.018.

      [2] Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renew Sustain Energy Rev 2011;15:1625–36. doi:10.1016/j.rser.2010.11.032.

      [3] Bayrak F, Abu-Hamdeh N, Alnefaie KA, Öztop HF. A review on exergy analysis of solar electricity production. Renew Sustain Energy Rev 2017;74:755–70. doi:10.1016/j.rser.2017.03.012.

      [4] Ramkumar R, Kesavan M, Raguraman CM, Ragupathy A. Enhancing the Performance of Photovoltaic Module Using Clay Pot Evaporative Cooling Water 2016:217–22. doi:10.1109/ICEETS.2016.7582929.

      [5] Chow TT. A review on photovoltaic/thermal hybrid solar technology. Appl Energy 2010;87:365–79. doi:10.1016/j.apenergy.2009.06.037.

      [6] Wu S-Y, Chen C, Xiao L. Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel. Renew Energy 2018. doi:10.1016/j.renene.2018.03.023.

      [7] Hasan HA, Sopian K, Jaaz AH, Al-Shamani AN. Experimental investigation of jet array nanofluids impingement in photovoltaic/thermal collector. Sol Energy 2017;144:321–34. doi:10.1016/j.solener.2017.01.036.

      [8] Hosseinzadeh M, Salari A, Sardarabadi M, Passandideh-Fard M. Optimization and parametric analysis of a nanofluid based photovoltaic thermal system: 3D numerical model with experimental validation. Energy Convers Manag 2018;160:93–108. doi:10.1016/j.enconman.2018.01.006.

      [9] Sardarabadi M, Passandideh-Fard M, Maghrebi M-J, Ghazikhani M. Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Sol Energy Mater Sol Cells 2017;161:62–9. doi:10.1016/j.solmat.2016.11.032.

      [10] Wolf M. Performance analyses of combined heating and photovoltaic power systems for residences. Energy Convers 1976;16:79–90. doi:10.1016/0013-7480(76)90018-8.

      [11] Preet S, Bhushan B, Mahajan T. Experimental investigation of water based photovoltaic/thermal (PV/T) system with and without phase change material (PCM). Sol Energy 2017;155:1104–20. doi:10.1016/j.solener.2017.07.040.

      [12] Ji J, Lu JP, Chow TT, He W, Pei G. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Appl Energy 2007;84:222–37. doi:10.1016/j.apenergy.2006.04.009.

      [13] Kiran S, Devadiga U. Performance Analysis of Hybrid Photovoltaic / Thermal Systems. Int J Emerg Technol Adv Eng 2014;4:80–6.

      [14] Palaskar VN, Deshmukh SP. Performance Analysis of a Specially Designed Flow Heat Exchanger Used in Hybrid Photovoltaic / Thermal Solar System. Int J Renew Energy Res 2015;5:1–7.

      [15] Fudholi A, Sopian K, Yazdi MH, Ruslan MH, Ibrahim A, Kazem HA. Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Convers Manag 2014;78:641–51. doi:10.1016/j.enconman.2013.11.017.

      [16] Rosli MMA, Sopian K, Mat BS, Sulaiman YM, Salleh E. Heat Removal Factor of an Unglazed Photovoltaic Thermal Collector with a Serpentine Tube. Renew Energy Serv Mank Vol II Sel Top from World Renew Energy Congr WREC 2014 2016;21:583–90. doi:10.1007/978-3-319-18215-5_52.

      [17] Ibrahim A, Othman MY, Ruslan MH, Alghoul MA, Yahya M, Zaharim A, et al. Performance of photovoltaic thermal collector (PVT) with different absorbers design. WSEAS Trans Environ Dev 2009;5:321–30.

      [18] Ibrahim A, Jin GL, Daghigh R, Salleh MHM, Othman MY, Ruslan MH, et al. Hybrid Photovoltaic Thermal ( PV / T ) Air and Water Based Solar Collectors Suitable for Building Integrated Applications. Am J Environ Sci 2009;5:618–24. doi:10.3844/ajessp.2009.618.624.

      [19] Chow TT. Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Sol Energy 2003;75:143–52. doi:10.1016/j.solener.2003.07.001.

      [20] A. Nahar, “Numerical Investigation And Modelling Of Solar Photovoltaic / Thermal Systems†Renew. Sustain Energy Rev., vol 16, no1, pp. 213-345,2017. 2017.

      [21] Florschuetz LW. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Sol Energy 1979;22:361–6. doi:10.1016/0038-092X(79)90190-7.

      [22] Abu Bakar MN, Othman M, Hj Din M, Manaf NA, Jarimi H. Design concept and mathematical model of a bi-fluid photovoltaic/thermal (PV/T) solar collector. Renew Energy 2014;67:153–64. doi:10.1016/j.renene.2013.11.052.

      [23] Zondag HA, De Vries DW, Van Helden WGJ, Van Zolingen RJC, Van Steenhoven AA. The thermal and electrical yield of a PV-thermal collector. Sol Energy 2002;72:113–28. doi:10.1016/S0038-092X(01)00094-9.

      [24] Aste N, Del Pero C, Leonforte F. Thermal-electrical optimization of the configuration a liquid PVT collector. Energy Procedia 2012;30:1–7. doi:10.1016/j.egypro.2012.11.002.

      [25] Alvarez S, Molina JL. Solar Thermal Technologies for Buildings. 2003.

      [26] Vokas G, Christandonis N, Skittides F. Hybrid photovoltaic-thermal systems for domestic heating and cooling-A theoretical approach. Sol Energy 2006;80:607–15. doi:10.1016/j.solener.2005.03.011.

  • Downloads

  • How to Cite

    Salami Tijani, A., Farhan Bin Md Tahir, A., Kubenthiran, J., & Singh Bhathal Singh, B. (2018). Thermal Energy Recovery from a Grid Connected Photovoltaic-Thermal (PVT) System Using Water as Working Fluid. International Journal of Engineering & Technology, 7(4.36), 389-393. https://doi.org/10.14419/ijet.v7i4.36.28148