Development and Characterization on sound acoustic at photo-induced polymer foam composited at prolonged ultra-violet exposure

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this paper, polymer foam composites (FC) have been developed based on polyol mixed flexible crosslinker and fibre filler of Meranti Merah. 10 mm, 20 mm and 30 mm thickness of foam polymer and its composites have been use in this study. The percentage loading of wood fibre of 5%, 10%, 15% and 20% added with polymer foam is namely as polymer foam (PP) and its composites of PP5, PP10, PP15 and PP20. The sound absorption coefficient (α) and pore structure of the foam samples have been measure by using Impedance Tube test and Scanning Electron Microscopy (SEM). UV Weatherometer is used to examine the durability and weatherproof of its composite. The results show that the highest thickness of the highest percentage fiber filler (Pp2030) gives higher sound absorption coefficient (α). 0.9922 and 0.99889 which contributed from low and high frequency absorption level respectively. The smallest pores size structure was observed with highest filler loading of PP20. The higher the thickness and the higher the percentage loading of wood filler gives smaller pore structure, consequently, increased the sound absorption coefficient level. Meanwhile, the stability of polymer foam composites is high due to unchanged pore structures morphology with prolonged ultra violet exposure.

     

     


  • Keywords


    Polymer foam composites; sound absorption coefficient; wood filler.

  • References


      [1] Rus, A. Z. M., Azahari, M. S. M., Zaliran, M. T & Kormin, S. (2017). Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials. AIP Conference Proceedings, 1877(1), 1-8.

      [2] Hassan, N. N. M., & Rus A. Z. M. (2016). Thermal and activation energy of renewable polymer after UV irradiation. ARPN Journal of Engineering and Applied Sciences, 11(3), 1510-1514.

      [3] Rus, A. M. (2010). Polymers from renewable materials. Science Progress, 93(3), 285-300.

      [4] Rus A. Z., Kemp T. J., & Clark A. J. (2009). Degradation studies of polyurethanes based on vegetable oils. Part 2. Thermal degradation and materials properties. Progress in Reaction Kinetics and Mechanism, 34(1), 1-41.

      [5] Rus A. Z. M., Kemp T. J., & Clark A. J. (2008). Degradation studies of polyurethanes based on vegetable oils. Part 1. Photodegradation, Progress in Reaction Kinetics and Mechanism, 33(4), 363-391.

      [6] Seddeq, H. S. (2009). Factors influencing acoustic performance of sound absorptive materials. Australian Journal of Basic and Applied Sciences, 3(4), 4610-4617.

      [7] Juan, V. C. R, Lerma, H. C. C, Fernando, H. S, & José, M. C. U. (2013). Degradation of polyurethanes for cardiovascular applications. In R. Pignatello (Ed.), Advances in Biomaterials Science and Biomedical Applications. London: IntechOpen, pp. 51-82.

      [8] Chen, B., Zhao, J., & Rao, Z. (2016). Thermal conductivity of energy conversion and storage composite materials packing with short fiber fillers and artificial size cylinder fillers. Applied Thermal Engineering, 103, 1196-1204.

      [9] Francisco, S., & Jaime, P. (2004). Guidelines for the acoustic design of absorptive devices. Noise and Vibration Worldwide, 35(1), 12-21.

      [10] Zhao, T., Yang, M., Wu, H., Guo, S., Sun, X., & Liang, W. (2015). Preparation of a new foam/film structure poly (ethylene-co-octene) foam materials and its sound absorption properties. Materials Letters, 139, 275–278.

      [11] Harhash, M., Sokolova, O., Carradó, A., & Palkowski, H. (2014). Mechanical propertiesand forming behaviour of laminated steel/polymer sandwich systems withlocal inlays–Part 1. Compos. Struct., 118, 112–120.

      [12] Wang, F., Wang, L. C., Wu, J. G., & You, X. H. (2007). Sound absorption property of open-pore aluminum foams. Research and Development, February 2007, 31-33.

      [13] Connolly, M., King, J. P., Shidaker, T. A., & Duncan, A. C. (2006). Characterization of pultruded polyurethane composites: Environmental exposure and component assembly testing. Proceedings of the Composites, pp. 18-20.

      [14] Coates, M., & Kierzkowski, M. (2002). Acoustic textiles--lighter, thinner and more sound-absorbent. Tech Text Int, 11(7), 15.

      [15] Chen, B., Zhao, J., & Rao, Z. (2016). Thermal conductivity of energy conversion and storage composite materials packing with short fiber fillers and artificial size cylinder fillers. Applied Thermal Engineering, 103, 1196–1204

      [16] Zhao, T., Yang, M., Wu, H., Guo, S., Sun, X., & Liang, W. (2015). Preparation of a new foam/film structure poly (ethylene-co-octene) foam materials and its sound absorption properties. Materials Letters, 139, 275–278.

      [17] Harhash, M., Sokolova, O., Carradó, A., Palkowski, H., 2014. Mechanical propertiesand forming behaviour of laminated steel/polymer sandwich systems withlocal inlays–Part 1. Compos. Struct., 118, 112–120.

      [18] Rus, A. Z. M., Normunira, N. M., & Rahim, R. A. (2014). Influence of multilayer textile biopolymer foam doped with titanium dioxide for sound absorption materials. Key Engineering Materials, 594, 750-754.

      [19] Azahari, M. S. M., Rus, A. Z. M., Zaliran, M. T., & Kormin, S. (2017, August). Improving sound absorption property of polyurethane foams doped with natural fiber. IOP Conference Series: Materials Science and Engineering, 226(1), 1-6.

      [20] Valentine, C., Craig, T. A., & Hager, S. L. (1993). Inhibition of the discoloration of polyurethane foam caused by ultraviolet light. Journal of cellular plastics, 29(6), 569-588.

      [21] Wang, F., Wang, L. C., Wu, J. G., & You, X. H. (2007). Sound absorption property of open-pore aluminum foams. Research and Development, February 2007, 31-33.

      [22] Connolly, M., King, J. P., Shidaker, T. A., & Duncan, A. C. (2006). Characterization of pultruded polyurethane composites: Environmental exposure and component assembly testing. Proceedings of Composites, pp. 18-20.

      [23] Valentine, C., Craig, T. A., & Hager, S. L. (1993). Inhibition of the discoloration of polyurethane foam caused by ultraviolet light. Journal of cellular plastics, 29(6), 569-588.

      [24 Juan, V. C. R, Lerma, H. C. C, Fernando, H. S, & José, M. C. U. (2013). Degradation of polyurethanes for cardiovascular applications. In R. Pignatello (Ed.), Advances in Biomaterials Science and Biomedical Applications. London: IntechOpen, pp. 51-82.

      [25] Elleder, M., & Borovanský, J. (2001). Autofluorescence of melanins induced by ultraviolet radiation and near ultraviolet light. A histochemical and biochemical study. Histochemical Journal, 33(5), 273-281.

      [26] Tiuc, A. E., Vasile, O., Usca, A. D., Gabor, T., & Vermesan, H. (2014). The analysis of factors that influence the sound absorption coefficient of porous materials. Romanian Journal of Acoustics and Vibration, 11(2), 105-108.

      [27] Mathur, G., & Fuller, C. (2016). Novel sound absorptive materials based on acoustic metamaterial principles. Proceedings of the 23rd Int. Congr. Sound Vib, pp. 1-8.

      [28] Boubakri, A., Elleuch, K., Guermazi, N., & Ayedi, H. F. (2009). Investigations on hygrothermal aging of thermoplastic polyurethane material. Materials and Design, 30(10), 3958-3965.

      [29] Rus, A. Z. M., Mohid, S. R., Nurulsaidatulsyida, S., & Marsi, N. (2013). Biopolymer doped with titanium dioxide superhydrophobic photocatalysis as self-clean coating for lightweight composite. Advances in Materials Science and Engineering, 2013, 1-9.

      [30] Rus A. Z., Kemp T. J., & Clark A. J. (2009). Degradation studies of polyurethanes based on vegetable oils. Part 2. Thermal degradation and materials properties. Progress in Reaction Kinetics and Mechanism, 34, 1, 1-41.

      [31] Wang, F., Wang, L. C., Wu, J. G., & You, X. H. (2007). Sound absorption property of open-pore aluminum foams. Research and Development, February 2007, 31-33.

      [32] Verdejo, R., Stämpfli, R., Alvarez-Lainez, M., Mourad, S., Rodriguez-Perez, M. A., Brühwiler, P. A., & Shaffer, M. (2009). Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Composites Science and Technology, 69(10), 1564-1569.

      [33] Seddeq, H. S. (2009). Factors influencing acoustic performance of sound absorptive materials. Australian Journal of Basic and Applied Sciences, 3(4), 4610-4617.

      [34] Wang, F., Wang, L. C., Wu, J. G., & You, X. H. (2007). Sound absorption property of open-pore aluminum foams. Research and Development, February 2007, 31-33.

      [35] Adnan, N. Q. A., Rus, M., & Zafiah, A. (2013). Sound absorption of laminated biopolymer foam and epoxy foam. Key Engineering Materials, 595, 291–295.

      [36] Allard, J. F. (2009). Propagation of sound in porous media: Modelling sound absorbing materials. John Wiley and Sons.

      [37] Sung, G., Kim, S. K., Kim, J. W., & Kim, J. H. (2016). Effect of isocyanate molecular structures in fabricating flexible polyurethane foams on sound absorption behavior. Polymer Testing, 53, 156–164.

      [38] Verdejo, R., Stamfli, R., Alvarez-Lainez, M., Mourad, S., Rogriguez-Perez, M. A., & Brühwiler, P. A. (2009). Enhanced acoustic damping in flexible polyurethane foams filled carbon nanotubes. Composite Science Technology, 69, 1564-9.

      [39] Noble, P. S., Goode, B., Krouskop, T. A., & Crisp, D. B. Aging of polyurethane foams. Journal of Rehabilitation Research and Development, 21(2), 31 -38.

      [40] Ostrogorsky, A. G., Glicksman, L. R., & Reitz, D. W. (1986). Aging of polyurethane foams. International Journal of Heat and Mass Transfer, 29(8), 1169-1176.


 

View

Download

Article ID: 28159
 
DOI: 10.14419/ijet.v7i4.33.28159




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.