Thermal Properties of the Graphene Composites: Application of Thermal Interface Materials

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Epoxy mixed with others filler for thermal interface material (TIM) had been well conducted and developed. There are problem occurs when previous material were used as matrix material likes epoxy that has non-uniform thickness of thermal interface material produce, time taken for solidification and others. Thermal pad or thermal interface material using graphene as main material to overcome the existing problem and at the same time to increase thermal conductivity and thermal contact resistance. Three types of composite graphene were used for thermal interface material in this research. The sample that contain 10 wt. %, 20 wt. % and 30 wt. % of graphene was used with different contain of graphene oxide (GO).  The thermal conductivity of thermal interface material is both measured and it was found that the increase of amount of graphene used will increase the thermal conductivity of thermal interface material. The highest thermal conductivity is 12.8 W/ (mK) with 30 w. % graphene. The comparison between the present thermal interface material and other thermal interface material show that this present graphene-epoxy is an excellent thermal interface material in increasing thermal conductivity.

     

     


  • Keywords


    Graphene; Thermal Interface Material (TIM); Thermal Conductivity; Graphene Oxide (GO).

  • References


      M. Mazlan, A. M. M. A. Bakri, R. Wahab, A. K. Zulhisyam, A. M. Iqbal, M. H. M. Amini and A. A. Mohammad. 2014. Simulation of nano carbon tube (NCT) in thermal interface material for electronic packaging application by using CFD software. Materials Science Forum. 803: 337-342.

      [2] M. Mazlan, A. M. M. A. Bakri, R. Wahab, A. K. Zulhisyam, M. R. M. Sukhairi, M. H. M. Amini and A. M. Amizi A. 2014. Comparison between thermal interface materials made of nano carbon tube (NCT) with gad pad 2500 in term of junction temperature by using CFD software, FluentTM. Materials Science Forum. 803: 243-249.

      [3] M. Mazlan, A. Rahim, A. M. M. A. Bakri, M. A. Iqbal, W. Razak and M. S. Salim. 2013. A new invention of thermal pad using sol-gel nanosilver doped silica film in plastic leaded chip carrier (PLCC) application by using computational fluid dynamic sofrware, CFD analysis. Advanced Materials Research. 795: 158-163.

      [4] M. Mazlan, A. Rahim, A. M. M. A. Bakri, W. Razak, A. F. Zubair, Y. M. Najib and A. B. Azman. 2013. Thermal management of electronic components by using computational fluid dynamic (CFD) software, FLUENTTM in several material applications (epoxy, composite material & nanosilver). Advanced Materials Research. 795: 141-147.

      [5] M. Mazlan, R. Atan, A. M. M. A. Bakri, M. I. Ahmad, M. H. Yusoff and F. N. A. Saad. 2013. Three dimensional simulation of thermal pad using nanomaterial, nanosilver in semiconductor and electronic component application. Advanced Materials Research. 626: 980-988.

      [6] C. Huang, X. Qian and R. Yang. 2018. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Reports. 132: 1–22.

      [7] M. Mohamed, M. N. Omar, M. Shaiful, A. Ishak, R. Rahman and M. Fahmi. 2018. Finite element analysis of heat sink in term of thermal and temperature distribution with different chip power input. Int. J. Eng. Technol. 7: 90–93.

      [8] M. Mazlan, A. M. M. A. Bakri, R. Wahab, A. K. Zulhisyam, M. R. M. Sukhairi, M. H. M. Amini and A. M. Amizi A. 2014. Comparison between thermal interface materials made of nano carbon tube (NCT) with gad pad 2500 in term of junction temperature by using CFD software, FluentTM. Materials Science Forum. 803: 243-249.

      [9] X. Wang, H. Liu, X. Qiu, L. Wang and L. Wang. 2018. Thermal conductivity of filled composite materials considering interactions between fillers. Appl. Therm. Eng. 141: 835–843.

      [10] M. Ohashi, S. Kawakami, Y. Yokogawa and G. C. Lai. 2005. Spherical aluminum nitride fillers for heat-conducting plastic packages. J. Am. Ceram. Soc. 88(9): 2615–2618.

      [11] W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia and L. Chen. 2015. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. Int. J. Therm. Sci. 91: 76–82.

      [12] W. Yu, H. Xie, L. Chen, Z. Zhu, J. Zhao and Z. Zhang. 2014. Graphene based silicone thermal greases. Phys. Lett. Sect. A Gen. At. Solid State Phys. 378(3): 207–211.

      [13] W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia and L. Chen. 2015. Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina. Int. J. Therm. Sci. 91: 76–82.

      [14] W. Yuan, Q. Xiao, L. Li and T. Xu. 2016. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl. Therm. Eng. 106: 1067–1074.

      [15] A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova and R. C. Haddon. 2007. Graphite Nanoplatelet - Epoxy Composite Thermal Interface Materials. J. Phys. Chem. C. 111: 7565–7569.

      [16 T. Cui, Q. Li, Y. Xuan and P. Zhang. 2015. Preparation and thermal properties of the graphene-polyolefin adhesive composites: Application in thermal interface materials. Microelectron. Reliab. 55(12): 2569–2574.

      [17] C. Li and G. Shi. 2011. Synthesis and electrochemical applications of the composites of conducting polymers and chemically converted graphene. Electrochim. Acta. 56(28):10737–10747.

      [18] K. M. F. Shahil and A. A. Balandin. 2012. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2): 861–867.

      [19] S. H. Xie, Y. Y. Liu and J. Y. Li. 2008. Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Appl. Phys. Lett. 92(24): 8–11.


 

View

Download

Article ID: 28169
 
DOI: 10.14419/ijet.v7i4.33.28169




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.