Corneal Endothelial Cell Changes with the Age in Normal Iraqi Population Using Em-3000 Tomey Speculer Microscope
-
2018-11-30 https://doi.org/10.14419/ijet.v7i4.28.28181 -
cell, IRAQI POPULATION, TOMEY SPECULER, CORNEAL ENDOTHELIAL -
Abstract
"Background: The cornea consists of the following layers, each of which is critical to normal function: 1. Epithelium. 2. Bowman layer.   3. Stroma. 4. Descemnts membrane.   5. Endothelium. The corneal endothelium is composed of a single layer, mostly of hexagonal cells.  Approximately 500,000 cells are present, with a density of about 3000 cells/mm2. The size, shape, and morphology of the endothelial cells can be observed by specular microscopy at the slit lamp".
"Patients and methods: 400 eyes of 200 patients who attended the ophthalmology department in Al-Zahraa teaching hospital were included in the study. Patients were grouped into five groups according to age:  [G1] less than 20 years. [G2] 20-30 years. [G3] 31-40 years. [G4] 41-50 years. [G5] more than 50 years so, we have five age groups.
Patients with history of intraocular surgery or ocular trauma, increased intraocular pressure, uveitis, corneal opacity, evidence of endothelial dystrophy on slit-lamp bio microscopy, diabetes mellitus and contact lens wearer were excluded from the study. After routine ophthalmic examination, all patients underwent specular microscopy using a noncontact specular microscopy [EM-3000 tomey specular microscope]".
"Results: The ECD of population 2718.34 ± 320.38 cell/mm2 [range, 1551 to 3376)]. The Avg. /µm2 370.03± 46.99 [range, 232 to 566]. The C.V. 39.3 ±7.66 [range, 25 to 73] and the hexagonal cell per cent 0.507 ± 0.112 [range 0.00 to 0.91]. There were no statistically significant differences in ECD, Avg., C.V. and hexagonal cell per cent between right and left eyes [P= 0.846, P=0.951, P= 0.290, P= 0.419 respectively]. Also there were no statistically significant differences in ECD, Avg., C.V. and hexagonal cell per cent between genders [P= 0.483, P= 0.237, P= o.258 and P= 0.439 respectively]. There were a statistical significant decrease in ECD and hexagonal cell per cent with increase in the age [r= -0.84 and r= -0.72 respectively]. The rate of cell loss was 0.8% per year".
Aim of the study:To evaluate the corneal endothelial layer changes in normal Iraqi population with age by using EM-3000 tomey specular microscope.
Â
Â
Â
-
References
[1] John Ferris. Basic sciences in ophthalmology; a self-assessment text. Second edition. 1999; 1:19.
[2] Jack J Kanski. Clinical ophthalmology a systematic approach. Seventh edition. 2011; 6:168.
[3] Myron Yanoff. Jay S. Duker.opthalmology.third edition. 2008; 4; sec.1.
[4] Herbert E. Kaufman. Bruce A. Barron. Marguerite B. McDonald. The cornea. Second edition. 1998; part 1: 33.
[5] Thomas Reinhard. Frank Larkin. The cornea and external eye disease. Chapter 1: 3.
[6] Thomas J., Gregory L., Louis B. American Academy of Ophthalmology. Basic and Clinical Science Course. 2007-2008; 2: 47-49.
[7] Jack j kanski .Signs in ophthalmology: Causes and differential diagnosis; 5:97.
[8] Thomas J., Gregory L., Louis B. American Academy of Ophthalmology. External disease and cornea; 5: 300.
[9] Thomas J., Gregory L., Louis B. American Academy of Ophthalmology. Basic and Clinical Science Course, External Disease and Cornea. 2008–2009;8:28–33.
[10] Thomas J., Gregory L., Louis B. American Academy of Ophthalmology. Basic and Clinical Science Course, External Disease and Cornea 2008–2009;8:394–395.
[11] Jung, S. E., K. Y. Seo, et al. . Expression of MUC1 on corneal endothelium of human. [2002]; Cornea 21[7]: 691–695.
[12] Stocker, E. G. and J. P. Schoessler. Corneal endothelial polymegathism induced by PMMA contact lens wear. Invest Ophthalmol Vis Sci. [1985]; 26[6]: 857-63.
[13] Bourne, W. M., L. R. Nelson, et al. Continued endothelial cell loss ten years after lens implantation. Ophthalmology [1994]; 101[6]: 1014-22; discussion 1022-3.
[14] Holden, B. A., D. F. Sweeney, et al. Effects of long-term extended contact lens wear on the human cornea. Invest Ophthalmol Vis Sci. [1985]; 26[11]: 1489-501.
[15] MacRae, S. M., M. Matsuda, et al. The long-term effects of polymethylmethacrylate contact lens wear on the corneal endothelium. Ophthalmology. [1994]; 101[2]: 365-70.
[16] Carlson, K. H. and W. M. Bourne. Endothelial morphologic features and function after long-term extended wear of contact lenses. Arch Ophthalmol.[1988]; 106[12]:1677-9.
[17] Laing, R. A., M. Sandstrom, et al. Morphological changes in corneal endothelial cells after penetrating keratoplasty. Am J Ophthalmol. [1976]; 82[3]: 459-64.
[18] Bourne, W. M. and H. E. Kaufman. Endothelial damage associated with intraocular lenses. Am J Ophthalmol [1976]; 81[4]: 482-5.
[19] Ishikawa, A. Risk factors for reduced corneal endothelial cell density before cataract surgery. J Cataract Refract Surg [2002]; 28[11]: 1982-92.
[20] Smith, C. A., J. M. Khoury, et al. Unexpected corneal endothelial cell decompensation after intraocular surgery with instruments sterilized by plasma gas. Ophthalmology [2000]; 107[8]: 1561-6; discussion 1567.
[21] Kim, T., A. L. Sorenson, et al. Acute corneal endothelial changes after laser in situ keratomileusis. Cornea. [2001]; 20[6]: 597-602.
[22] Waring, G. O., 3rd, W. M. Bourne, et al. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. [1982]; 89[6]: 531-90.
[23] Vannas, A., K. Setala, et al. Endothelial cells in capsular glaucoma. ActaOphthalmol [Copenh]. [1977]; 55[6]: 951-8.
[24] Schultz, R. O., M. Matsuda, et al. Corneal endothelial changes in type I and type II diabetes mellitus. Am J Ophthalmol. [1984]; 98[4]: 401-10.
[25] Rao, G. N., J. V. Aquavella, et al. Pseudophakic bullous keratopathy.Relationship to preoperative corneal endothelial status. Ophthalmology [1984]; 91[10]: 1135-40.
[26] MacRae, S. M., M. Matsuda, et al. The long-term effects of polymethylmethacrylate contact lens wear on the corneal endothelium. Ophthalmology [1994]; 101 [2]: 365-70.
[27] Younan, C., P. Mitchell, et al. Myopia and incident cataract and cataract surgery: the blue mountains eye study. Invest Ophthalmol Vis Sci. [2002]; 43[12]: 3625-32.
[28] Jones, S. S., R. G. Azar, et al. Effects of laser in situ keratomileusis [LASIK] on the corneal endothelium. Am J Ophthalmol. [1998]; 125[4]: 465-71.
[29] Smith, C. A., J. M. Khoury, et al. Unexpected corneal endothelial cell decompensation after intraocular surgery with instruments sterilized by plasma gas. Ophthalmology. [2000]; 107[8]: 1561-6; discussion 1567.
[30] Hara, M., N. Morishige, et al.Comparison of confocal biomicroscopy and noncontact specular microscopy for evaluation of the corneal endothelium. Cornea [2003]; 22[6]: 512-5.
[31] Hitzenberger CK. Measurement of corneal thickness by low coherence interferometry. Appl Opt. 1992; 31:6637–6642.
[32] Drexler W, Baumgartner A, Findl O, et al. Sub micrometer precision biometry of the anterior segment of the human eye. Invest Ophthalmol Vis Sci. 1997; 38:1304–1313.
[33] Bo¨hnke M, Chavanne P, Gianotti R, Salathe´ RP. Continuous noncontact corneal pachymetry with a high speed reflectometer. J Refract Surg.1998; 14:140–146.
[34] Wa¨lti R, Bo¨hnke M, Gianotti R, et al. Rapid and precise in vivo measurement of human corneal thickness with optical low-coherence reflectometry in normal human eyes. J Biomed Opt. 1998; 3:253–258.
[35] Huang D, Wang I, Lin CP, Puliafito CA, Fujimoto JG. Micron-resolution ranging of cornea anterior chamber by optical reflectometry. Lasers Surg Med. 1991; 11:419–425.
[36] Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol. 1994; 112:1584–1589.
[37] . Hoerauf H, Wirbelauer C, Scholz C, Engelhardt R, Koch P, Laqua H, Birngruber R. Slit lamp-adapted optical coherence tomography of the anterior segment. Graefes Arch Clin Exp Ophthalmol. 2000; 238:8–18.
[38] Wirbelauer C, Scholz C, Hoerauf H, Engelhardt R, Birngruber R, Laqua H. Corneal optical coherence tomography before and immediately after excimer laser photorefractive keratectomy. Am J Ophthalmol. 2000; 130:693–699.
[39] Walti R, Bohnke M, Gianotti R, Bonvin P, Baliff J, Salathe RP. Rapid and precise in vivo measurement of human corneal thickness with optical low-coherence reflectometry in normal human eyes. J Biomed Opt.1998; 3:253–258.
[40] Hockwin O, Lerman S, Ohrloff C. Investigations on lens transparency and its disturbances by microdensitometric analyses of Scheimpflug photographs. Curr Eye Res.1984; 3:15–22.
[41] Morgan AJ, Harper J, Hosking SL, Gilmartin B. The effect of corneal thickness and corneal curvature on pneumatonometer measurements. Curr Eye Res.2002; 25:107–112.
[42] . Lackner B, Schmidinger G, Skorpik C. Validity and repeatability of anterior chamber depth measurements with Pentacam and Orbscan. Optom Vis Sci.2005; 82:858–861.
[43] . Meinhardt B, Stachs O, Stave J, et al. Evaluation of biometric methods for measuring the anterior chamber depth in the noncontact mode. Graefes Arch Clin Exp Ophthalmol.2006; 244:559–564.
[44] Rabsilber TM, Khoramnia R, Auffarth GU. Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg.2006; 32:456–459.
[45] Benetz, B. A., E. Diaconu, et al. Comparison of corneal endothelial image analysis by Konan SP8000 noncontact and Bio-Optics Bambi systems. Cornea [1999]; 18[1]:67-72.
[46] British Journal of Ophthalmology. 1978, 62, 809-814.
[47] Operational Experience with the EM-3000â„¢ Non-contact Specular Microscope; [manual].
[48] Matsuda M, Yee RW, Edelhauser HF: Comparison of the corneal endothelium in an American and a Japanese population. Arch Ophthalmol.1985, 103:68-70.
[49] BMC Ophthalmology.2006, 6:9.
[50] American Academy of Ophthalmology: Corneal endothelial photography. Three-year revision. Ophthalmology.1997, 104:1360-5.
[51] Bourne WM, Nelson LR, Hodge DO: Continued endothelial cell loss ten years after lens implantation. Ophthalmology.1994, 101:1014-22.
[52] Padilla MD, Sibayan SA, Gonzales CS: Corneal endothelial cell density and morphology in normal Filipino eyes. Cornea. 2004,23:129-35.
[53] Landesz M, Siertsema JV, Van Rij G: Comparative study of three semi-automated specular microscopes. J Cataract Refract Surg.1995, 21:409-16.
[54] American Academy of Ophthalmology: Ophthalmic Procedures Assessment. Corneal endothelial photography. Ophthalmology.1991, 98:1464-8.
[55] Hirst LW, Ferris FL III, Stark WJ, Fleishman JA: Clinical specular microscopy. Invest Ophthalmol Vis Sci.1980, 19:2-4.
[56] Hirst LW, Ferris FL 3rd, Stark WJ, Fleishman JA: Normal endothelial cell count range. Ophthalmology.1980, 87:861-6.
[57] Yee RW, Matsuda M, Schultz RO, Edelhauser HF: Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res.1985, 4:671-8.
[58] Cheng H, Jacobs PM, McPherson K, Noble MJ: Precision of cell density estimates and endothelial cell loss with age. Arch ophthalmol. 1985, 103:1478-81.
[59] Yee RW, Matsuda M, Schultz RO, Edelhauser HF: Changes in the normal corneal endothelial cellular pattern as a function of age. Curr Eye Res.1985, 4:671-8.
[60] Inoue K, Tokuda Y, Inoue Y, Amano S, Oshika T, Inoue J: Corneal endothelial cell morphology in patients undergoing cataract surgery. Cornea.2002, 21:360-3.
-
Downloads
-
How to Cite
Mohanad M. Hasan, D. (2018). Corneal Endothelial Cell Changes with the Age in Normal Iraqi Population Using Em-3000 Tomey Speculer Microscope. International Journal of Engineering & Technology, 7(4.28), 599-607. https://doi.org/10.14419/ijet.v7i4.28.28181Received date: 2019-03-03
Accepted date: 2019-03-03
Published date: 2018-11-30