MM-wave backhauling for 5g small cells
-
2019-05-27 https://doi.org/10.14419/ijet.v7i4.28294 -
5G, Mm-Wave, Small Cells, Wirless Backhaul, LOS. -
Abstract
The high capacity requirement for meeting the high demand of wireless application usage is the main issue in researches. Besides, to increase the capacity of the network, a new topology of cell configuration should be deployed which is the use of small cell configuration like micro and Pico cells with such configuration topologies in order to have high data rate network. This article aims to study the performance evaluation of the use of two 5G mm wave backhauling configurations. The first one is the star topology and the second one is the mesh topology. The main difference between them is the cooperation in mesh topology between cells to transfer data. The performance metric used in this project is the energy efficiency obtained from the two configurations when changing the frequency bands and path loss coefficient. The simulation results show that the changing the frequency bands in mesh configuration gives the same energy efficiency reached to 500 Mb/s at 15 nodes while the star configuration results reached less than 100 Mb/s at the same number of nodes.
Â
Â
-
References
[1] Ahamed, M. M. & Faruque, S. 2018. 5g Backhaul: Requirements, Challenges, and Emerging Technologies. Dlm. (pnyt.). Broadband Communications Networks-Recent Advances and Lessons from Practice, hlm.: IntechOpen. https://doi.org/10.5772/intechopen.78615.
[2] Alsharif, M. H. & Nordin, R. 2017. Evolution Towards Fifth Generation (5G) Wireless Networks: Current Trends and Challenges in the Deployment of Millimetre Wave, Massive Mimo, and Small Cells. Telecommunication Systems 64(4): 617-637. https://doi.org/10.1007/s11235-016-0195-x.
[3] Chaudhari, A. & Murthy, C. S. R. 2017. Femto-to-Femto (F2f) Communication: The Next Evolution Step in 5g Wireless Backhauling. Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2017 15th International Symposium on, hlm. 1-8. https://doi.org/10.23919/WIOPT.2017.7959917.
[4] Chen, D., Schuler, J., Wainio, P. & Salmelin, J. 2015. 5g Self-Optimizing Wireless Mesh Backhaul. Computer Communications Workshops (INFOCOM WKSHPS), 2015 IEEE Conference on, hlm. 23-24. https://doi.org/10.1109/INFCOMW.2015.7179324.
[5] Coldrey, M., Berg, J.-E., Manholm, L., Larsson, C. & Hansryd, J. 2013. Non-Line-of-Sight Small Cell Backhauling Using Microwave Technology. IEEE Communications Magazine 51(9): 78-84. https://doi.org/10.1109/MCOM.2013.6588654
[6] Feng, X., Wang, H., Li, Z., Zou, W. & Kenan, X. 2017. Fast Access in V2v Communication Services by Dynamic Resources Allocation, Google Patents.
[7] Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., Rappaport, T. S., Maccartney, G. R., Sun, S. & Nie, S. 2014. Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks. IEEE Journal on Selected Areas in Communications 32(6): 1152-1163. https://doi.org/10.1109/JSAC.2014.2328111.
[8] Index, C. V. N. 2014. Global Mobile Data Traffic Forecast Update, 2013–2018-Cisco Systems. Inc., San Diego, White Paper
[9] Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., Sternad, M., Apelfrojd, R. & Svensson, T. 2014. The Role of Small Cells, Coordinated Multipoint, and Massive Mimo in 5g. IEEE Communications Magazine 52(5): 44-51. https://doi.org/10.1109/MCOM.2014.6815892.
[10] Kalimulin, R., Artemenko, A., Maslennikov, R., Putkonen, J. & Salmelin, J. 2015. Impact of Mounting Structures Twists and Sways on Point-to-Point Millimeter-Wave Backhaul Links. Communication Workshop (ICCW), 2015 IEEE International Conference on, hlm. 19-24. https://doi.org/10.1109/ICCW.2015.7247069.
[11] Medbo, J., Kyosti, P., Kusume, K., Raschkowski, L., Haneda, K., Jamsa, T., Nurmela, V., Roivainen, A. & Meinila, J. 2016. Radio Propagation Modeling for 5g Mobile and Wireless Communications. IEEE Communications Magazine 54(6): 144-151. https://doi.org/10.1109/MCOM.2016.7498102.
[12] Nasr, A. I. & Fahmy, Y. 2016. Millimeter-Wave Wireless Backhauling for 5g Small Cells: Star Versus Mesh Topologies. Microelectronics (ICM), 2016 28th International Conference on, hlm. 85-88. https://doi.org/10.1109/ICM.2016.7847914.
[13] Niu, Y., Gao, C., Li, Y., Su, L., Jin, D., Zhu, Y. & Wu, D. O. 2017. Energy-Efficient Scheduling for Mmwave Backhauling of Small Cells in Heterogeneous Cellular Networks. IEEE Transactions on Vehicular Technology 66(3): 2674-2687. https://doi.org/10.1109/TVT.2016.2582785.
[14] Niu, Y., Li, Y., Jin, D., Su, L. & Vasilakos, A. V. 2015. A Survey of Millimeter Wave Communications (Mmwave) for 5g: Opportunities and Challenges. Wireless Networks 21(8): 2657-2676. https://doi.org/10.1007/s11276-015-0942-z.
[15] Prasad, A., Uusitalo, M. A. & Maeder, A. 2017. Energy Efficient Coordinated Self-Backhauling for Ultra-Dense 5g Networks. Vehicular Technology Conference (VTC Spring) https://doi.org/10.1109/VTCSpring.2017.8108609.
[16] Rajagopal, S., Taori, R. & Abu-Surra, S. 2014. Self-Interference Mitigation for in-Band Mmwave Wireless Backhaul. Consumer Communications and Networking Conference (CCNC), 2014 IEEE 11th, hlm. 551-556. https://doi.org/10.1109/CCNC.2014.6866625.
[17] Rappaport, T. S., Maccartney, G. R., Samimi, M. K. & Sun, S. 2015. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Transactions on Communications 63(9): 3029-3056. https://doi.org/10.1109/TCOMM.2015.2434384.
[18] Robson, J. 2012. Small Cell Backhaul Requirements. NGMN White Paper 1-40.
[19] Shariat, M., Dianati, M., Seppänen, K., Suihko, T., Putkonen, J. & Frascolla, V. 2015. Enabling Wireless Backhauling for Next Generation Mmwave Networks. Networks and Communications (EuCNC), 2015 European Conference on, hlm. 164-168. https://doi.org/10.1109/EuCNC.2015.7194061.
[20] Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P. & Zorzi, M. 2015. Millimeter Wave Cellular Networks: A Mac Layer Perspective. IEEE Transactions on Communications 63(10): 3437-3458. https://doi.org/10.1109/TCOMM.2015.2456093.
[21] Taori, R. & Sridharan, A. 2015. Point-to-Multipoint in-Band Mmwave Backhaul for 5g Networks. IEEE Communications Magazine 53(1): 195-201. https://doi.org/10.1109/MCOM.2015.7010534.
[22] Bogale, T.E. & Le, L.B. 2016. Massive MIMO and mmWave for 5G wireless HetNet: Potential benefits and challenges. IEEE Vehicular Technology Magazine 11(1): 64–75. https://doi.org/10.1109/MVT.2015.2496240.
[23] Choi, J., Bai, J., Yeh, S.-P., Choi, Y.-S. & Talwar, S. 2018. Full-Duplex Self- Backhaul Small Cell: Capacity Gain and Traffic Adaptation. In 2018 IEEE International Conference on Communications Workshops (ICC Workshops). pp. 1–6. IEEE. https://doi.org/10.1109/ICCW.2018.8403647.
[24] Malila, B., Falowo, O. & Ventura, N. 2017. An Energy Efficiency Analysis for Outdoor Wireless Small Cell Backhaul. In Wireless Communications and Networking Conference (WCNC), 2017 IEEE. pp. 1–6. IEEE. https://doi.org/10.1109/WCNC.2017.7925704.
[25] Siddique, U., Tabassum, H. & Hossain, E. 2017. Downlink spectrum allocation for in-band and out-band wireless backhauling of full-duplex small cells. IEEE Trans. Commun 65(8): 3538–3554. https://doi.org/10.1109/TCOMM.2017.2699183.
[26] Wei, L., Hu, R.Q., Qian, Y. & Wu, G. 2014. Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wireless Communications 21(6): 136–143. https://doi.org/10.1109/MWC.2014.7000981.
[27] (Ridel et al. 2018) Ridel, E., Soffer, R., Kanari, U., Levitan, E., Zalitzky, I. & Bar, Y. 2018, June 7. Digital Full Duplex Over Single Channel Solution for Small Cell Backhaul Applications. US Patent App. 15/888,226.
-
Downloads
-
How to Cite
Thair Al-Heety, A., Singh Jit Singh, M., Tariqul Islam, M., & Hameed Ahmed, A. (2019). MM-wave backhauling for 5g small cells. International Journal of Engineering & Technology, 7(4), 6233-6237. https://doi.org/10.14419/ijet.v7i4.28294Received date: 2019-03-11
Accepted date: 2019-05-10
Published date: 2019-05-27