A Review on Antibiotic Resistance in Bacteria

  • Authors

    • Nazneen Jahan
    https://doi.org/10.14419/ijet.v7i2.32.28682
  • Antibiotic resistance, Dissemination, plasmids.
  • Antibiotics are now widely used in the treatment of infectious diseases. But the problem arise when the infectious agent become resistant to antibiotic drug therapy. Nowadays misuse of antibiotics in human, agriculture and veterinary medicine is the major reason for increased resistance. Resistance to antimicrobial agent’s results in treatment failure,increased mortality and morbidity. Antimicrobial resistance is now a global problem because resistance can transfer through mobile genetic elements such as plasmids, transposons and integrons. Pathogenic species including staphylococci, Streptococcus pneumonia and Mycobacterium tuberculosis together with commensal enteric bacteria predispose the dual risk of emerging antibiotic resistance. Finally, control of antibiotic resistance bacteria depends on reduction of selection pressure and improved surveillance to detect their subsequent spread.

     

     

     


  • References

    1. [1] S.B. Levy, “The challenge of antibiotic resistance,†Sci. Am, vol. 278, pp. 46–53, 1998.

      [2] M.N. Alekshun, S.B. Levy, “Molecular mechanisms of antibacterial multidrug resistance,†Cell, vol. 128, pp. 1037-50, 2007

      [3] A. Giedraitiene, A. Vitkauskiene, R. Naginiene and A. Pavilonis, “Antibiotic resistance mechanisms of clinically important bacteria,†Medicina, vol. 47(3), pp. 137-146, 2011

      [4] S. Dzidic, J. Suskovic and B. Kos, “Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects,†Food. Technol. Biotechnol, vol. 46, pp. 11-21, 2008.

      [5] J. Pouillard “A forgotten discovery: doctor of medicine Ernest Duchesne's thesis (1874-1912),(1874-1912),†Hist. Sci. Med, vol. 36(1), pp. 11–20, 2002

      [6] S.B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,†Nat. Med, vol.10, pp. 122-129, 2004.

      [7] A.J. Alanis, “Resistance to antibiotics: are we in the post-antibiotic era?†Arch. Med. Res, vol. 36, pp. 697-705, 2005.

      [8] A. Pallett and K. Hand, “Complicated urinary tract infections: practical solutions for the treatment of multi resistant Gram- negative bacteria,†J. Antimicrob. Chemother, vol. 65, pp. 25-33, 2010.

      [9] R.J. Fair and Y. Tor, “Antibiotics and Bacterial Resistance in the 21st Century,†Perspect. Medicin. Chem, vol. 6, pp. 25-64, 2014.

      [10] R. Bisht, A. Katiyar, R. Singh and P. Mittal, “Antibiotic resistance –a global issue of concern,†Asian. J. Pharm. Clin. Res, vol. 2(2), pp. 34-39, 2009.

      [11] I.N. Okeke, A. Lamikanra and R. Edelman, “Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries,†Emerg. Infect. Dis, vol. 5, pp. 18-27, 1999.

      [12] S.B. Levy, “Antibiotic availability and use: consequences to man and his environment,†J. Clin. Epidemiol, vol. 44(2), pp. 83-87, 199.

      [13] C.A. Hart and S. Kariuki, “Antimicrobial resistance in developing countries,†BMJ, vol. 317, pp. 647-650, 1998.

      [14] N.C. Sharma, P.K. Mandal, R. Rohini Dhillon and M. Jain, “Changing profile of Vibrio cholerae O1, O139 in Delhi and periphery,†Indian. J. Med. Res, vol. 125, pp. 633-640, 2007.

      [15] R. Bhatia and J.P. Narain, “The growing challenge of antimicrobial resistance in the South-East Asia Region - Are we losing the battle?†Indian. J. Med. Res, vol. 132(5), pp. 482-486, 2010.

      [16] A. Tyagi, A. Kapil and P. Singh, “Incidence of methicillin resistant Staphylococcus aureus (MRSA) in pus samples at a tertiary care hospital,†J. Indian. Acad. Clin. Med, vol. 9, pp. 33-35, 2008.

      [17] A. Sutrisna, O. Soebjakto, F.S. Wignall, et al, “Increasing resistance to ciprofloxacin and other antibiotics in Neisseria gonorrhoeae from East Java and Papua, Indonesia, in 2004-implications for treatment,†Int. J. STD. AIDS, vol. 17, pp. 810-812, 2006.

      [18] ECDC/EMEA Joint Technical Report, “The bacterial challenge: time to react. European Centre for Disease Prevention and Control, 2009,†EMEA. doc. Ref, EMEA/576176/2009.

      [19] J. Carlet, V. Jarlier, S. Harbarth, A. Voss, H. Goossens, D. Pittet and the Participants of the 3rd World Healthcare-Associated Infections Forum, “Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action,†Antimicrob. Resist. Infect. Control, vol. 1, pp. 11, 2012.

      [20] D.W. MacPherson, B.D. Gushulak, W.B. Baine, et al, “Population mobility, globalization and antimicrobial drug resistance,†Emerg. Infect. Dis, vol. 15, pp. 1727-1732, 2009.

      [21] L. Ellerbroek, D. Narapati, N. Phu Tai, et al, “Antibiotic resistance in Salmonella isolates from imported chicken carcasses in Bhutan and from pig carcasses in Vietnam,†J. Food. Prot, vol. 73, pp. 376-379, 2010.

      [22] F.M. Aarestrup, R.S. Hendriksen, L. Jana, G. Katie and T. Kathryn, “International spread of multidrug-resistant Salmonella schwarzengrund in food products,†Emerg. Infect. Dis, vol. 13, pp. 726-731, 2007.

      [23] L.B. Rice, D. Sahm and R.A. Binomo, “Mechanisms of resistance to antibacterial agents,†In: P.R. Murray, E.J. Baron, J.H. Jorgensen, M.A. Phaller, R.H. Yolken, editors. Manual of clinical microbiology. Washington: ASM Press, pp. 1074-1101, 2003.

      [24] L. Cantas, S.Q.A. Shah, L.M. Cavaco, et al, “A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota,†Front. Microbiol, vol. 14(4), pp. 96, 2013.

      [25] N. Datta, M.C. Faiers, D.S. Reeves, W. Brumfitt, F. Orskov and I. Orskov, “R factors in Escherichia coli in faeces after oral chemotherapy in general practice,†Lancet, vol. 1(7694), pp. 312-315, 1971.

      [26] J.K. Moller, A. Leth Bak, A. Stenderup, H. Zachariae and H. Afzelius, “Changing patterns of plasmid-Mediated drug Resistance during tetracycline therapy,†J. Antimicrob. Chemother, vol. 11(3), pp. 388-391, 1977.

      [27] G.F. Babock, D.L. Berryhill and D.H. Marsh, “R-factors of Escherichia coli from dressed beef and humans,†Appl. Microbiol, vol. 25, pp. 21-23, 1973.

      [28] J.J. Damato, D.V. Eitzman and H. Baer, “Persistence and dissemination in the community of R-factors of nosocomial origin,†J. Infect. Dis, vol. 129, pp. 205-209, 1974.

      [29] K.B. Linton, M.H. Richmond, R. Bevan and W.A. Gillespie, “Antibiotic resistance and R factors in coli-form bacilli isolated from hospital and domestic sewage,†J. Medical. Micro, vol. 7, pp. 91-103, 1974.

      [30] H. Tschape, H. Rische and J. Stempel, “R-plasmids in Enterobacteriaceae from river, drinking and waste-water,†Zentrabl. Gesamte. Hyg. Ihre. Grenzgeb, vol.19, pp. 826-829, 1973.

      [31] M. Cizman, “The use and resistance of antimicrobials in the community,†Int. J. Antimicrob. Agents, vol. 21, pp. 297-307, 2003.

      [32] R. Wise, T. Hart and O. Cars, “Antimicrobial resistance is a major threat to public health,†BMJ, vol. 317, pp. 609-610, 1998.

      [33] E.H. Akalin, “Surgical prophylaxis: The evolution of guidelines in an era of cost containment,†J. Hosp. Infect, vol. 50, pp. 3-7, 2002.

      [34] D.A. Goldmann, R.A. Weinstein, R.P. Wenzel, et al, "Strategies to prevent and control the emergence and spread of antimicrobial-resistant microorganisms in hospitals. A challenge to hospital leadership,†JAMA, vol. 275, pp. 234-240, 1996.

      [35] D.M. Schlaes, D.N. Gerding, J.F. John, et al, “Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: Guidelines for the prevention of antimicrobial resistance in hospitals,†Clin. Infect. Dis, vol. 25, pp. 584-599, 1997.

      [36] A. Fleming, “On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenza,†Br. J. Exp. Pathol, vol. 10(3), pp. 226-236, 1929.

      [37] E. Chain, H.W. Florey, A.D. Gardner, et al, “The classic: penicillin as a chemotherapeutic agent, 1940,†Clin. Orthop. Rela. Res, vol. 439, pp. 23-26, 2005.

      [38] R. Quinn, “Rethinking Antibiotic Research and Development: World War II and the Penicillin Collaborative,†Am. J. Public. Health, vol. 103(3), pp. 426-434, 2013.

      [39] J. Yanling, L. Xin and L. Zhiyuan, “The Antibacterial Drug Discovery,†In: H. El-Shemy, ed. Drug Dscovery, IntechOpen, pp. 290-307, 2013.

      [40] J. Clardy, M.A. Fischbach and C.T. Walsh, “New antibiotics from bacterial natural products,†Nat. Biotechnol, vol. 24, pp. 1541-1550, 2006.

      [41] K. Lewis, “Platforms for antibiotic discovery,†Nat. Rev. Drug. Discov, vol. 12, pp. 371-387, 2013.

      [42] M. Barber and M. Rozwadowska-Dowzenko, “Infection by penicillin resistant staphylococci,†Lancet, vol. 2, pp. 641-644, 1948.

      [43] J. Crofton and D.A. Mitchison, “Streptomycin resistance in pulmonary tuberculosis,†Br. Med. J, vol. 2(4588), pp. 1009-1015, 1948.

      [44] M.L. Cohen, “Epidemiology of drug resistance: Importance for a post antimicrobial era,†Science, vol. 257, pp. 1050-1055, 1992.

      [45] J. Bennett and J.W. Geme, “Bacterial resistance and antibiotic use in the emergency department,†Pediatric clinics of North America, vol. 46, pp. 1125-1143, 1999.

      [46] K. Todar, “Bacterial Resistance to Antibiotics,†Todar’s Online Textbook of Bacteriology, 2002.

      [47] J. Davies and D. Davies, “Origins and evolution of antibiotic resistance,†Microbiol. Mol. Biol. Rev, vol. 74(3), pp. 417-433, 2010.

      [48] R. Gaynes and J. Edwards, “Nosocomial vanomycin resistant enterococci in the United States, 1989-1995: The first 1000 isolates,†Infect. Control. Hosp. Epidemiol, vol. 17, pp.18, 1996.

      [49] K.B. Stevenson, “Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci in rural communities, Western United States,†Emerg. Infect. Dis, vol. 11(6), pp. 895-903, 2005.

      [50] J.D.D. Pitout and K.B. Laupland, “Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern,†Lancet. Infect. Dis, vol. 8, pp. 159-166, 2008.

      [51] G.A. Jacoby and L.S. Munoz-Price, “The new β-lactamases,†N. Engl. J. Med, vol. 352, pp. 380-391, 2005.

      [52] J. Bogaerts, J. Verhaegen, J.P. Munyabikali, et al, “Antimicrobial resistance and serotypes of Shigella isolates in Kigali, Rwanda (1983 to 1993): increasing frequency of multiple resistance,†Diagn. Microbiol. Infect. Dis, vol. 28, pp. 165-171, 1997.

      [53] K.W. Sang, V. Oundo and D. Schnabel, “Prevalence and antibiotic resistance of bacterial pathogens isolated from childhood diarrhoea in four provinces of Kenya,†J. Infect. Dev. Ctries, vol. 6(7), pp. 572-578, 2012.

      [54] P. Nordmann, L. Dortet and L. Poirel, “Carbapenem resistance in Enterobacteriaceae: here is the storm!†Trends. Mol. Med, vol. 18, pp. 263-272, 2012.

      [55] S. Budak, O. Oncul, Z. Aktas, et al, “The determination of carbapenem resistance in Escherichia coli and Pneumoniae isolates related to nosocomial infections and the evaluation of risk factors,†Southeast. Asian. J. Trop. Med. Public. Health, vol. 45(1), pp. 113-122, 2014.

      [56] J. Fischer, I. Rodriguez, S. Schmoger, et al, “Escherichia coli producing VIM-1carbapenemase isolated on a pig farm,†J. Antimicrob. Chemother, vol. 67, pp. 1793-1795, 2012.

      [57] D. Timofte, I.E. Maciuca, N.J. Evans, et al, “Detection and Molecular Characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-Lactamases from Bovine Mastitis Isolates in the United Kingdom,†Antimicrob. Agents. Chemother, vol. 58(2), pp. 789-794, 2014.

      [58] H.F. Chambers, “The changing epidemiology of Staphylococcus aureus?†Emerg. Infect. Dis, vol. 7, pp.178-182, 2001.

      [59] F.D. Lowy, “Staphylococcus aureus infections,†N. Engl. J. Med, vol. 339, pp. 520-532, 1998.

      [60] A.L. Frank, J.F. Marcinak, P.D. Mangat and P.C. Schreckenberger, “Increase in community-acquired methicillin-resistant Staphylococcus aureus in children,†Clin. Infect. Dis, vol. 29(4), pp. 935-936, 1999.

      [61] H.E. Chambers, “Methicillin resistance in Staphylococci: Molecular and biochemical,†Clin. Microbiol. Rev, vol. 10(4), pp. 781-791, 1997.

      [62] T. Ito, Y. Katayama, K. Asada K, et al, “Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus,†Antimicrob. Agents. Chemother, vol. 45, pp. 1323-1336, 2001.

      [63] P.S. Loomba, J. Taneja and B. Mishra, “Methicillin and Vancomycin Resistant S. aureus in Hospitalized Patients,†J. Glob. Infect. Dis, vol. 2(3), pp. 275-283, 2010.

      [64] M.J. Jevons, “Celbenin-resistant staphylococci,†BMJ, vol. 1, pp. 124-125, 1961.

      [65] M.Z. David and R.S. Daum, “Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging Epidemic,†Clin. Microbiol. Rev, vol. 23(3), pp. 616-687, 2010.

      [66] R.H. Deurenberg, C. Vink, S. Kalenic, A.W. Friedrich, C.A. Bruggeman and E.E. Stobberingh, “The molecular evolution of methicillin-resistant Staphylococcus aureus,†Clin. Microbiol. Infect, vol. 13(3), pp. 222-235, 2007.

      [67] R. Kock, K. Becker, B. Cookson, et al, “Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe,†Euro. Surveill, vol. 15(41), pp. 19688, 2010.

      [68] W.C. Huskins, C.M. Huckabee, N.P. O'Grady NP, et al, “Intervention to reduce transmission of resistant bacteria in intensive care,†N. Engl. J. Med, vol. 364(15), pp. 1407-1418, 2011.

      [69] M.E. Mulligan, K.A. Murray-Leisure, B.S. Ribner, et al, “Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management,†Am. J. Med, vol. 94(3), pp. 313-328, 1993.

      [70] E.J. Gorak, S.M. Yamada and J.D. Brown, “Community-acquired methicillin-resistant Staphylococcus aureus in hospitalized adults and children without known risk factors,†Clin. Infect. Dis, vol. 29, pp. 797-800, 1999.

      [71] H.A. Bukharie, “A review of community-acquired methicillin-resistant Staphylococcus aureus for primary care physicians,†J. Family. Community. Med, vol. 17(3), pp. 117-120, 2010.

      [72] M.F. Kluytmans-Vandenbergh and J.A. Kluytmans, “Community-acquired methicillin-resistant Staphylococcus aureus: Current perspectives,†Clin. Microbiol. Infect, vol. 12, pp. 9-15, 2006.

      [73] H.A. Carleton, B.A. Diep, E.D. Charlebois, G.F. Sensabaugh and F. Perdreau-Remington, “Community-adapted methicillin-resistant Staphylococcus aureus (MRSA): Population dynamics of an expanding community reservoir of MRSA,†J. Infect. Dis, vol. 190(10), pp. 1730-1738, 2004.

      [74] E.D. Charlebois, D.R. Bangsberg, N.J. Moss, et al, “Population-based community prevalence of methicillin-resistant Staphylococcus aureus in the urban poor of San Francisco,†Clin. Infect. Dis, vol. 34(4), pp. 425-433, 2002.

      [75] S.K. Fridkin, “Vancomycin intermediate and resistant S. aureus: What infectious disease specialists need to know?†Clin. Infect. Dis, vol. 32(1), pp. 108-115, 2001.

      [76] J.D.D Pitout, P. Nordmann, K.B. Laupland and L. Poirel, “Emergence of Enterobacteriaceae producing extended-spectrum b-lactamases (ESBLs) in the community,†J. Antimicrob. Chemother, vol. 56, pp. 52-59, 2005.

      [77] D.M. Livermore, “Bacterial resistance: origins, epidemiology, and impact,†Clin. Infect. Dis, vol. 36, pp. 11-23, 2003.

      [78] H. Wickens and P. Wade, “Understanding antibiotic resistance,†Pharm. J, vol. 274, pp. 501-504, 2005.

      [79] H. Knothe, P. Shah, V. Krcmery, M. Antal and S. Mitsuhashi, “Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens,†Infection, vol. 11, pp. 315-317, 1983.

      [80] D.L. Paterson and R.A. Bonomo, “Extended-spectrum β-lactamases: a clinical update,†Clin. Microbiol. Infect, vol. 18(4), pp. 657-686, 2005.

      [81] P.A. Bradford, “Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat,†Clin. Microbiol. Infect, vol. 14, pp. 933-951, 2001.

      [82] A. Vitkauskiene, V. Dudzevicius, L. Ryskus, D. Adukauskiene and R. Sakalauskas, “The rate of isolation of Klebsiella pneumoniae producing extended spectrum beta-lactamases and resistance to antibiotics,†Medicina, vol. 42(2), pp. 288-293, 2006.

      [83] D.L. Paterson, “Recommendation for treatment of severe infections caused by Enterobacteriaceae producing extended-spectrum β-lactamases (ESBLs),†Clin. Microbiol. Rev, vol. 6, pp. 460-463, 2000.

      [84] R. Ben-Ami, J. Rodriguez-Bano, H. Arslan, et al, “A multinational survey of risk factors for infection with extended-spectrum beta-lactamase producing enterobacteriaceae in nonhospitalized patients,†Clin. Infect. Dis, vol. 49, pp. 682, 2009.

      [85] Centers for Disease Control and Prevention, “National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992–June 2001â€, Am. J. Infect. Control, vol. 29(6), pp. 404-421, August 2001.

      [86] M.J. Richards, J.R. Edwards, D.H. Culver and R.P. Gaynes, “Nosocomial infections in pediatric intensive care units in the United States, National Nosocomial Infections Surveillance System,†Pediatrics, vol. 103(4), pp. e39, 1999.

      [87] F.M. Aarestrup, Y. Agerso, P. Gerner-Smidt, M. Madsen and L.B. Jensen, “Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark,†Diagn. Microbiol. Infect. Dis, vol. 37, pp. 127-137, 2000.

      [88] E. Molitoris, M.I. Krichevsky, D.J. Fagerberg and C.L. Quarles, “Effects of dietary chlortetracycline on the antimicrobial resistance of porcine faecal Streptococcaceae,†J. Appl. Bacteriol, vol. 60, pp. 111-120, 1986.

      [89] A.E. Van den Bogaard and E.E. Stobberingh, “Epidemiology of resistance to antibiotics, Links between animals and humans,†Int. J. Antimicrob. Agents, vol. 14, pp. 327-335, 2000.

      [90] B.A. Wiggins, “Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters,†Appl. Environ. Microbiol, vol. 62, pp. 3997-4002, 1996.

      [91] H.P. Endtz, A. Van Betkum and J. Van Dum, “Vancomycin-rcsistant Enteroeocci,†Ned. Tijdschr. Geneeskd, vol. 141, pp. 108-109, 1997.

      [92] A. Kjcrulf, L. Pallescn and H. Wesih, “Vancomycin-resistant Enterococci at a large university hospital in Denmark,†APMIS, vol. 104, pp. 475-479, 1996.

      [93] M.B. Olofsson, K.J. Pomull, A. Kamell, B. Tclandcr and B. Svcnungsson, “Fecal carriage of vancomycin- and ampicillin-resistant Entcrococci observed in Swedish adult patients with diarrhea but not among healthy subjects,†Scand. J. Infect. Dis, vol. 33, pp. 659-662, 2001.

      [94] G.S. Simonsen, H.M. Andersen, A. Digranes, et al, “Low faecal carrier rule of vancomycin resistant enterococci in Norwegian hospital patients,†Scand. J. Infect. Dis, vol. 30, pp. 465-468, 1998.

      [95] N. Van den Break, A. Ott, A. van Belkum, et al, “Prevalence and determinants of fecal colonization with vancomycin-resistant entcrococcus in hospitalised patients in the Netherlands,†Infect. Contr. Hosp. Epidemiol, vol. 21, pp. 520-524, 2000.

      [96] D.M. Pugh, “The EU precautionary bans of animal feed additive antibiotics,†Toxicol. Lett, vol. 128, pp. 35-44, 2002.

      [97] C.J. Thomson, “The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: A 10-year perspective,†J. Antimicrob. Chemother, vol. 43, pp. 31-40, 1999.

      [98] P. Toltzis, “Antibiotic-resistant gram-negative bacteria in hospitalized children,†Clin. Lab. Med, vol. 24, pp. 363-380, 2004.

      [99] N. Adnan, M. Sultana, O.K. Islam, S.P. Nandi and M.A. Hossain, “Characterization of Ciprofloxacin resistant Extended Spectrum β Lactamase (ESBL) producing Escherichia spp. from clinical waste water in Bangladesh,†ABB, vol. 4, pp. 15-23, 2013.

      [100] I. Schlackow, N. Stoesser, A. Sarah Walker, D.W. Crook, T.E.A. Peto and D.H. Wyllie, “Increasing incidence of Escherichia coli bacteraemia is driven by an increase in antibiotic resistant isolates: Electronic database study in Oxfordshire 1999-2011,†J. Antimicrob. Chemother, vol. 67, pp. 1514-1524, 2012.

      [101] D. Sriramulu, “Evolution and impact of bacterial drug resistance in the context of cystic fibrosis disease and nosocomial settings,†Microbiol. Insights, vol. 6, pp. 29, 2013.

      [102] P.M. Hawkey, “The origins and molecular basis of antibiotic resistance,†BMJ, vol. 317, pp. 657-660, 1998.

      [103] J.M. Munita and C.A. Arias, “Mechanisms of Antibiotic Resistance,†Microbiol. Spectr, vol. 4(2), pp. 10, 2016.

      [104] D. Raghunath, “Emerging antibiotic resistance in bacteria with special reference to India,†J. Biosci, vol. 33(4), pp. 593-603, 2008.

      [105] D.N. Wilson, “Ribosome-targeting antibiotics and mechanisms of bacterial resistance,†Nat. Rev. Microbiol, vol. 12(1), pp. 35-48, 2014.

      [106] B. Berger-Bachi, “Resistance Mechanisms of Gram Positive Bacteria,†Int. J. Med. Microbiol, vol. 292, pp. 27-35, 2002.

      [107] M. Fernandeza, S. Condea, J. de la Torreb, C. Molina-Santiagob, J. Ramosb and E. Duqueb, “Mechanisms of Resistance to Chloramphenicol in Pseudomonas putida KT2440,†Antimicrob. Agents. Chemother, vol. 56(2), pp. 1001-1009, 2011.

      [108] G.D. Wright, “Bacterial resistance to antibiotics: enzymatic degradation and modification,†Adv. Drug. Delivery. Rev, vol. 57(10), pp. 1451-1470, 2005.

      [109] P.F. McDermott, R.D. Walker and D.G. White, “Antimicrobials: modes of action and mechanisms of resistance,†Int. J. Toxicol, vol. 22(2), pp. 135-143, 2003.

      [110] F.V. Bambeke, J.M. Pages and V.J. Lee, “Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux,†Recent. Patents. Anti-Infect. Drug. Disc, vol. 1, pp. 157-175, 2006.

      [111] K. Poole, “Efflux pumps as antimicrobial resistance mechanisms,†Ann. Med, vol. 39, pp. 162-176, 2007.

      [112] L.J. Piddock, “Multidrug-resistance efflux pumps—not just for resistance,†Nat. Rev. Microbiol, vol. 4, pp. 629-636, 2006.

      [113] S. B. Levy and L. McMurry, “Plasmid-determined tetracycline resistance involves new transport systems for tetracycline,†Nature, vol. 276, pp. 90-92, 1978.

      [114] I. Chopra and M. Roberts, “Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance,†Microbiol. Mol. Biol. Rev, vol. 65(2), pp. 232-260, 2001.

      [115] M. Tuckman, P.J. Petersen, A.Y.M. Howe, et al, “Occurrence of Tetracycline Resistance Genes among Escherichia coli Isolates from the Phase 3 Clinical Trials for Tigecycline,†Antimicrob. Agents. Chemother, vol. 51(9), pp. 3205-3211, 2007.

      [116] A.J. Macpherson, and N.L. Harris, “Interactions between commensal intestinal bacteria and the immune system,†Nat. Rev. Immunol, vol. 13, pp. 478-485, 2004.

      [117] S. Falkow, R.V. Citarella, J.A. Wohlhieter and T. Watanabe, “The molecular nature of R-factors,†J. Mol. Biol, vol. 17(1), pp. 102-116, 1966.

      [118] Y. Sugino and Y. Hirota, “Conjugal fertility associated with resistance factor R in Escherichia coli,†J. Bacteriol, vol. 84(5), pp. 902-910, 1962.

      [119] D.B. Clewell, Y. Yagi and B. Bauer, “Plasmid-determined tetracycline resistance in Streptococcus faecalis: evidence for gene amplification during growth in presence of tetracycline,†Proc. Natl. Acad. Sci. USA, vol. 72(5), pp. 1720-1724, 1975.

      [120] D.M. Livermore, “Beta-Lactamases in laboratory and clinical resistance,†Clin. Microbiol. Rev, vol. 8(4), pp. 557-584, 1995.

      [121] P.J. Johnsen, G.S. Simonsen, O. Olsvik, T. Midtvedt and A. Sundsfjord, “Stability, persistence, and evolution of plasmid-encoded VanA glycopeptide resistance in enterococci in the absence of antibiotic selection in vitro and in mice,†Microb. Drug. Resist, vol. 8, pp. 161-170, 2002.

      [122] L.M. Weigel, D.B. Clewell, S.R. Gill, et al, “Genetic Analysis of a high level vancomycin resistant isolate of Staphylococcus aureus,†Science, vol. 302(5650), pp. 1569-1571, 2003.

      [123] E.Y. Furuya and F.D. Lowy, “Antimicrobial-resistant bacteria in the community setting,†Nat. Rev. Microbiol, vol. 4(1), pp. 36-45, 2006.

      [124] A. Robicsek, G.A. Jacoby and D.C. Hooper, “The worldwide emergence of plasmid-mediated quinolone resistance,†Lancet. Infect. Dis, vol. 6, pp. 629-640, 2006.

      [125] F. Dionisio, I. Matic, M. Radman, O.R. Rodrigues and F. Taddei, “Plasmids spread very fast in heterogeneous bacterial communities,†Genetics, vol. 162(4), pp. 1525-1532, 2002.

      [126] V.M. Hughes and N. Datta, “Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics,†Nature, vol. 302, pp. 725-726, 1983.

      [127] A. Carattoli, “Plasmids and the spread of resistance,†Int. J. Med. Microbiol, vol. 303(6-7), pp. 298-304, 2013.

      [128] R. Colello, A.I. Etcheverria, J.A. Di Conza, G.O. Gutkind and N.L. Padola, “Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC),†Braz. J. Microbiol, vol. 46(1), pp. 1-5, 2015.

      [129] J.A. Di Conza and G.O Gutkind, “Integrones: los coleccionistas de genes,†Rev. Arg. Microbiol, vol. 42, pp. 63-78, 2010.

      [130] K. Harada and T. Asai, “Role of Antimicrobial Selective Pressure and Secondary Factors on Antimicrobial Resistance Prevalence in Escherichia coli from Food-Producing Animals in Japan,†J. Biomed. Biotechnol, vol. 2010, pp. 180682, 2010.

      [131] B.M. Marshall and S.B. Levy, “Food animals and antimicrobials: impacts on human health,†Clin. Microbiol. Rev, vol. 24(4), pp. 718-733, 2011.

      [132] K.C.D. Silva, T. Knobl and A.M. Moreno, “Antimicrobial resistance in veterinary medicine: mechanisms and bacterial agents with the greatest impact on human health,†Braz. J. Vet. Res. Anim. Sci, vol. 50(3), pp. 171-183, 2013.

      [133] F. Anthony, J. Acar, A. Franklin, et al, “Antimicrobial resistance: responsible and prudent use of antimicrobial agents in veterinary medicine,†Rev. Sci. Tech, vol. 20, pp. 829-839, 2001.

      [134] A.D. Anderson, J.M. Nelson, S. Rossiter and F.J. Angulo, “Public health consequences of use of antimicrobial agents in food animals in the United States,†Microb. Drug. Resist, vol. 9, pp. 373-379, 2003.

      [135] M. Casewell, C. Friis, E. Marco, P. McMullin and I. Phillips, “The European ban on growth-promoting antibiotics and emerging consequences for human and animal health,†J. Antimicrob. Chemother, vol. 52, pp. 159-161, 2003.

      [136] F.C. Cabello, “Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment,†Environ. Microbiol, vol. 8, pp. 1137-1144, 2006.

      [137] S.S. Bastianello, N. Fourie, L. Prozesky, P.W. Nel and T.S. Kellermann, “Cardiomyopathy of ruminants induced by the litter of poultry fed on rations containing the ionophore antibiotic, maduramicin, macropathology and histopathology,†Onderstepoort. J. Vet. Res, vol. 62, pp. 5-18, 1995.

      [138] G.W. Sundin, D.E. Monks and C.L. Bender, “Distribution of the streptomycin-resistance transposon Tn5393 among phylloplane and soil bacteria from managed agricultural habitats,†Can. J. Microbiol, vol. 41, pp.792-799, 1995.

      [139] A. Caprioli, L. Busani, J.L. Martel and R. Helmuth, “Monitoring of antibiotic resistance in bacteria of animal origin:epidemiological and microbiological methodologies,†Int. J. Antimicrob. Agents, vol. 14, pp. 295-301, 2000.

      [140] M. Jean-Louis, F. Tardy, A. Brisabois, R. Lailler, M. Coudert and E. Chaslus-Dancla, “The French antibiotic resistance monitoring programs,†Int. J. Antimicrob. Agents, vol. 14, pp. 275-283, 2000.

      [141] R. Sharma, K. Munns, T. Alexander, et al, “Diversity and distribution of commensal fecal Escherichiacoli bacteria in beef cattle administered selected subtherapeutic antimicrobials in a feedlot setting,†Appl. Environ. Microbiol, Vol. 74, pp. 6178-6186, 2008.

      [142] M.A. Kohanski, M.A. DePristo and J.J. Collins, “Sublethal antibiotic treatment leads to multidrug resistance via radical- induced mutagenesis,†Mol. Cell, vol. 37, pp. 311-320, 2010.

      [143] T.W. Alexander, J.L. Yanke, T. Reuter, et al, “Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics,†BMC. Microbiol, vol. 11, pp. 19, 2011.

      [144] E. Gullberg, S. Cao, O.G. Berg, et al, “Selection of resistant bacteria at very low antibiotic concentrations,†PLoS. Pathog, vol. 7, pp. e1002158, 2011.

      [145] W. Witte, “Medical consequences of antibiotic use in agriculture. Science,†vol. 279, pp. 996-997, 1998.

      [146] F.M. Aarestrup, “Association between the consumption of antimicrobial agents in animal husbandry and the occurrence of resistant bacteria among food animals,†Int. J. Antimicrob. Agents, vol. 12, pp. 279-285, 1999.

      [147] L. Armand-Lefevre, R. Ruimy and A. Andremont, “Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs,†Emerg. Infect. Dis, vol. 11, pp. 711-714, 2005.

      [148] E.M. Harrison, G.K. Paterson, M.T.G. Holden, et al, “Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC,†EMBO. Mol. Med, vol. 5, pp. 509-515, 2013.

      [149] L.E. Spoor, P.R. McAdam, L.A. Weinert, et al, “Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus,†mBio, vol. 4. pp. e00356–e00313, 2013.

      [150] Q. Chang, W. Wang, G. Regev-Yochay, M. Lipsitch and W.P. Hanage, “Antibiotics in agriculture and the risk to human health: how worried should we be?†Evol. Appl, vol. 8(3), pp. 240-247, 2015.

      [151] European Food Safety Authority (EFSA), “European Food Safety Authority Panel on Biological Hazards. Foodborne antimicrobial resistance as a biological hazard Scientific Opinion,†EFSA. J, vol. 765, pp. 1-87, 2008.

      [152] World Health Organization, “Tackling antibiotic resistance from a food safety perspective in Europe,†WHO, Geneva, 2011.

      [153] H. Goossens, M. Ferech, R. Vander Stichele, M. Elseviers and ESAC Project Group, “Outpatient antibiotic use in Europe and association with resistance: a cross-national database study,†Lancet, vol. 365, pp. 579-587, 2005.

      [154] R.H. Schwartz, B.J. Freij, M. Ziai and M.J. Shcridan, “Antimicrobial prescribing for acute purulent rhinitis in children: A survey of pediatrician and family practioners,†Pediatr. Infect. Dis. J, vol. 16, pp. 185-190, 1997.

      [155] B. Schwartz, D.M. Bell and J.M. Hughes, “Preventing the emergence of antimicrobial resistance. A call for action by clinicians, public health officials and patients,†JAMA, vol. 278, pp. 944-945, 1997.

      [156] M.A. Faiz and A. Basher, “Antimicrobial resistance: Bangladesh experience,†Regional. Health. Forum, vol. 15, pp. 1-8, 2011.

      [157] F.U. Akter, D. Heller, A. Smith, M.M. Rahman and A.F. Milly, “Antimicrobial use in pediatric wards of teaching hospitals in Bangladesh,†Mymensingh. Med. J, vol. 13(1), vol. 63-66, 2004.

      [158] J. Olenja, “Health-seeking behaviour in context,†East. Afr. Med J, vol. 80, pp. 61-62, 2003.

      [159] F.R. Chowdhury, M.M. Rahman, M.F. Huq and S. Begum, “Rationality of drug uses: its Bangladeshi perspectives,†Mymensingh. Med. J, vol. 15(2), pp. 215-219, 2006.

      [160] C. Ronsmans, T. Islam and M.L. Bennish ML, “Medical practitioners' knowledge of dysentery treatment in Bangladesh,†BMJ, vol. 313, pp. 205-206, 1996.

      [161] M.A. Faiz and M.K. Chowdhury, “Pattern of Antlmicrobial therapy in a medical college hospital,†Bangladesh. Med. J, vol. 18(4), pp. 139-145, 1989.

      [162] A. Berzanskyte, R. Valinteliene, F.M. Haaijer-Ruskamp, R. Gurevicius and L. Grigoryan, “Self- medication with antibiotics in Lithuania,†Int. J. Occup. Med. Environ. Health, vol. 19(4), pp. 246-253, 2006.

      [163] H.S. Gold and R.C. Moellering, “Antimicrobial-drug resistance,†N. Engl. J. Med, vol. 335, pp. 1443-1445, 1996.

      [164] P. Richard, R. Le Floch and C. Chamoux, “Pseudomonas aeuroginosa outbreak in a burn unit-Role of antimicrobial in the emergence of multiple resistant strains,†J. Infect. Dis, vol. 170, pp. 377-383, 1994.

      [165] T. Midtvedt, “Antibiotic resistance and genetically modified plants,†Microb. Ecol. Health. Dis, vol. 25, pp. 25918, 2014.

      [166] F. Gebhard and K. Smalla, “Transformation of Acinetobacter sp. Strain BD413 by Transgenic Sugar Beet DNA,†Appl. Environ. Microbiol, vol. 64(4), pp. 1550-1554, 1998.

      [167] T. Hoffmann, C. Golz and O. Schieder, “Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants,†Curr. Genet, vol.27(1), pp. 70-76, 1994.

      [168] S.R. Verma, “Genetically Modified Plants: Public and Scientific Perceptions,†ISRN. Biotechnol, vol. 2013, pp. 11, 2013.

      [169] S.B. Levy, “Antibiotic resistance: an ecological imbalance,†Ciba. Foundation. Symposium, vol. 207(1-9), pp. 9-14, 1997.

      [170] R.I. Aminov and R.I. Mackie, “Evolution and ecology of antibiotic resistance genes,†FEMS. Microbiol. Lett, vol. 271, pp. 147-161, 2007.

      [171] H.K. Allen, L.A. Moe, J. Rodbumrer, A. Gaarder and J. Handelsman, “Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil,†ISME. J, vol. 3, pp. 243-251, 2009.

      [172] V.M. DCosta, C.E. King, L. Kalan, et al, “Antibiotic resistance is ancient,†Nature, vol. 477, pp. 457-461, 2011.

      [173] S. Demaneche, H. Sanguin, J. Pote, et al, “Antibiotic-resistant soil bacteria in transgenic plant fields,†Proc. Natl. Acad. Sci. USA, vol. 105, pp. 3957-3962, 2008.

      [174] J.S. Song, J.H. Jeon, J.H. Lee, S.H. Jeong and B.C. Jeong, “Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of EdisonSeamount (south of Lihir Island, Papua New Guinea),†J. Microbiol, vol. 43, pp. 172-178, 2005.

      [175] K. Bhullar, N. Waglechner, A. Pawlowski, et al, “Antibiotic resistance is prevalent in an isolated cave microbiome,†PLoSONE, vol. 7(4), pp. e34953, 2012.

      [176] M. Popowska, A. Miernik, M. Rzeczycka and A. Lopaciuk, “The impact of environmental contamination with antibiotics on levels of resistance in soil bacteria,†J. Environ. Qual, vol. 39, pp. 1679-1687, 2010.

      [177] J.L. Martinez, F. Baquero and D. Andersson, “Predicting antibiotic resistance,†Nature. Rev. Microbiol, vol. 5, pp. 958-965, 2007.

      [178] G. Torres-Cortes, V. Millan, H.C. Ramirez-Saad, R. Nisa-Martinez, N. Toro and F. Martinez-Abarca, “Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples, Environ,†Microbiol, vol. 13(4), pp. 11011104, 2011.

      [179] M. Alipour, R. Hajiesmaili, M. Talebjannat and Y. Yahyapour, “Identification and antimicrobial resistance of Enterococcus Spp. isolated from the river and coastal waters in northern Iran,†Sci. World. J, vol. 287458, pp. 5, 2014.

      [180] K.K. Kumarasamy, M.A. Toleman, T.R. Walsh, et al, “Emergence of a new antibiotic resistance mechanism in India, Pakistan, and UK: a molecular, biological, and epidemiological study,†Lancet. Infect. Dis, vol. 10, pp. 597-602, 2010.

      [181] T.R. Walsh, J. Weeks, D.M. Livermore and M.A. Toleman, “Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study,†Lancet. Infect. Dis, vol. 11, pp. 355-362, 2011.

      [182] L.B. Price, L.G. Lackey, R. Vailes and E. Silbergeld, “The persistence of fluoroquinolone-resistant Campylobacter in poultry production,†Environ. Health. Perspect, vol. 115, pp. 1035-1039, 2007.

      [183] R. Nannapaneni, I. Hanning, K.C. Wiggins, R.P. Story, S.C. Ricke and M.G. Johnson, “Ciprofloxacin-resistant Campylobacter persists in raw retail chicken after the fluoroquinolone ban,†Food. Addit. Contam. Part A Chem. Anal. Control. Expo. Risk. Assess, vol. 26, pp. 1348-1353, 2009.

      [184] C.C. Hughes ad W. Fenical, “Antibacterials from the sea,†Chemistry, vol. 16, pp. 12512-12525, 2010.

      [185] H. Rahman, B. Austin, W.J. Mitchell, et al, “Novel anti-infective compounds from marine bacteria,†Mar. Drugs, vol. 8, pp. 498-518, 2010.

      [186] R.E. Hancock and H.G. Sahl, “Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies,’ Nat. Biotechnol, vol. 24, pp. 1551-1557, 2006.

      [187] E. Kutter, “Phage Therapy: Bacteriophages as naturally occurring antimicrobials,†In: E. Goldman, L.H. Green, ed. Practical Handbook of Microbiology. Boca Raton: CRC Press, pp. 713-730, 2008.

      [188] B.R. Levin and J.J. Bull, “Population and evolutionary dynamics of phage therapy,†Nat. Rev. Microbiol, vol. 2, pp. 166-173, 2004.

      [189] A.B. Monk, C.D. Rees, P. Barrow, S. Hagens and D.R. Harper, “Bacteriophage applications: where are we now?†Lett. Appl. Microbiol, vol. 51, pp. 363-369, 2010.

      [190] M.D. Eaton and J.S. Bayne,†Bacteriophage therapy: Review of the principles and results of the use of bacteriophage in the treatment of infections (III),†JAMA, vol. 103, pp. 1934-1939, 1934.

      [191] D.C. Hooper, “Mechanisms of action and resistance of older and newer fluoroquinolones,†Clin. Infect. Dis, vol. 2, pp. S24-28, 2000.

      [192] O. Lomovskaya, H.I. Zgurskaya, M. Totrov and W.J. Watkins, “Waltzing transporters and ‘the dance macabre’ between humans and bacteria,†Nat. Rev. Drug. Discov, vol. 6, pp. 56-65, 2007.

      [193] R.G. Masterton “Antibiotic cycling: more than it might seem?†J. Antimicrob. Chemother, vol. 55, pp. 1–5, 2005

      [194] W.E. Scheckler, D. Brimhall, A.S. Buck, et al, "Requirements for infrastructure and essential activities of infection control and epidemiology in hospitals: a consensus panel report, Society of Healthcare Epidemiology of America†Infect. Control. Hosp. Epidemiol, vol. 19, pp. 114–124, 1998.

  • Downloads

  • How to Cite

    Jahan, N. (2018). A Review on Antibiotic Resistance in Bacteria. International Journal of Engineering & Technology, 7(2.32), 505-512. https://doi.org/10.14419/ijet.v7i2.32.28682