New methodology for indexing and extracting images

  • Authors

    • Anis Ismail Lebanese University
    • Shadi Khawandi
    • Firas Abdallah
    2019-04-21
    https://doi.org/10.14419/ijet.v7i4.28689
  • Indexing, Retrieval, Extracting, Images, Shape.
  • Abstract

    Indexing and image retrieval has become an interesting area of research today because of the lack of advanced methodologies for indexing and extracting images and the existence of huge amounts of images available everywhere; especially on the web. The available solutions are able to find similar items having the exact shape but not the same item if it has a different shape. In this paper, a new method has been proposed for indexing and extracting images from a database or a folder of images. This database consists of a table of images which contains the paths of the images then we begin the comparison between these images, from this comparison the program displays the percentage of the differences between the images and whether the images are the same or not. The proposed methodology is clever in the way the recovery of images leads to a comparison between images from the pixel. In addition to this, the proposed solution will be able to recognize whether two images having the same shape or not.

     

     

     

     


  • References

    1. [1] Cole L., Austin D., Cole L. "Visual Object Recognition Using Template Matching." Australasian Conference on Robotics and Automation, 2004.

      [2] D., Dimov. "Rapid and Reliable Content Based Image Retrieval." Proceedings of NATO ASI on Multisensor Data and Information Processing for Rapid and Robust Situation and Threat Assessment, 2005.

      [3] N. Idrissi. La naviguation dans les bases d'images: prise en compte des attributs de texture. Unimsité de Nantes. These de Doctorat, Octobre 2008.

      [4] Gwénélé Quellec. [ndtion et fusion mailtimodale pour la recherche din ï¬ ormation par le contenu. Application aux bases de données d'images médicales. Université européenne Bretagne. These de Doctorat, Septembre 2008.

      [5] TO Nguyen. Localisation de symboles dans les documents graphiques. Université Nancy 2. These de Doctorat, Décembre 2009.

      [6] T. Kato, K. Hirata. Query by visual example in contt-based image retrieval, Proc. EDBI92. Lecture Notes in computer Science, 1992, p.56-71.

      [7] Jain, A. Vailaya. Image retrieval using color and shape. Pattern Recognition, vol.29, n°8, 1996.

      [8] J. Canrw. A computational approach to edge detection. [BEE Transactions on Pattern Analysis and Machine htdhgence, Volume 8, n°6 :679 - 698, Novembre 1986.

      [9] R. Deriche. Using canny's criteria to daive an optimal edge detector recursively implemented. International Journal Computer Vision, Volume 1, n°2,167-187, 1987. https://doi.org/10.1007/BF00123164.

      [10] M. Ferecatu. Image retrieval with active rdevance feedback using both visual and keyword-based descriptors. Université de Versailles Saint- (haentin-En- Yvelines. These de Doctorat, 2005.

      [11] MK Hu. Visual Pattern Recognition by moment invariants. IRE Transaction on Inï¬ormation Theory, Volume 8, n°2:179-187, 1962.

      [12] Daoudi. Recherche par similarité dans les grandes bases de données multimedia Application 5 la recherche par le contenu d'images. lNSA Lyon. These de Doctorat, 2009.

      [13] O. Aude, A. Torralba. Modeling the shape of the scene: a holistic represtation of the spatial envelope. International Journal of Computer Vision, 42(3):145_175, 2001.

      [14] B. Maniunath, WYMa. Texture features ï¬or browsing an retrieval of image data. IEEE Transaction on Pattern analysis and machine Intelligence, vol 18 numéro 8, 1996.

      [15] S. Marcelaie. Mathunatical description of the response of simple cortical cells. Journal of Optical Society of America. Vol 70 No 11: 1297-1300. Novembre 1980. https://doi.org/10.1364/JOSA.70.001297.

      [16] BSManiunath, W.Ma. Texture features for browsing and retrieval of image data. [BEE Transactions on Pattern Analysis and Machine Intelligence (PAMI- Special issue on Digital Libraries), 18(8): 837421996. pages 18.

      [17] J. Landré. Analyse multi-résolution pour la recherche et l'indexation dimages par le contu dans les bases de données application a la base dimages paléontolog'que TransTy ï¬ pal. Université de Bourgogne. These de Doctorat, Décembre 2005.

      [18] JY Chen, CA Bouman, John C. Dalton. Hierarchical Browsing and Search of Large Image Databases. IEEE’ITP: [BEE Transactions on Image Processing, 9(3): 442-455, 2000. https://doi.org/10.1109/83.826781.

      [19] Avinash N Bhute, B. B. Meshram, Content Based Image Indexing and Retrieval, International Journal of Graphics & Image Processing,Vol 3, issue 4, Nov. 2013.

      [20] Avinash N Bhute, B. B. Meshram, Text Based Approach for Indexing and Retrieval of Image and Video: A Review, Advances in Vision Computing: An International Journal (AVC) Vol.1, No.1, March 2014.

      [21] Nhu-Van Nguyen, Christophe Rigaud and Jean-Christophe Burie, Digital Comics Image Indexing Based on Deep Learning, jornql of imaging, 2018, 4, 89.

      [22] Meysam Argany and Amir Ramezani and Ali Ahmadi, Determination of basalt zones using basalt extraction index (BEI) and ASTER image classificationDetermination of basalt zones using basalt extraction index (BEI) and ASTER image classification, Cogent Geoscience, vol 4, N.1, 2018.

      [23] C.P. Sumathi1, T. Santhanam2 and G.Gayathri Devi, A SURVEY ON VARIOUS APPROACHES oF TEXT EXTRACTION IN IMAGES, International Journal of Computer Science & Engineering Survey (IJCSES) Vol.3, No.4, August 2012.

  • Downloads

  • How to Cite

    Ismail, A., Khawandi, S., & Abdallah, F. (2019). New methodology for indexing and extracting images. International Journal of Engineering & Technology, 7(4), 5815-5820. https://doi.org/10.14419/ijet.v7i4.28689

    Received date: 2019-03-30

    Accepted date: 2019-04-08

    Published date: 2019-04-21