A new design and simulation of cylindrical-gold horn Nano-antenna at terahertz region for energy harvesting application

  • Authors

    • Doaa Maryam Abbas Mohammed Department of Communications Techniques Engineering, Engineering Technical College / Najaf, Al-Furat Al-Awsat Technical University, Iraq.
    • Faris Mohammed Ali
    • Salim M. Wadi
    2019-05-27
    https://doi.org/10.14419/ijet.v7i4.28788
  • Nanoantenna, Horn, Gain, Directivity, Terahertz.
  • In this paper, the design and simulate a new horn nanoantenna at terahertz frequencies by using the CST Microwave studio 2018. The proposed design be composed of an Au–Air–Au symmetric transmission line flared horn at the end, where the arranged of cylindrical gold pillars have been considered in the geometrical lattice. The Numerical simulation have been done in this work with taking in the consideration the losses of the material and the desperation. The horn nanoantenna shown with numerical results (wide bandwidth) and the directivity is greater than 10 dB from the results, the horn nanoantenna could be used in different applications such as energy harvesting, telecommunication and different technical ranging from smart lighting to optical wireless communication.

     

  • References

    1. [1] M.I. Amanti, “Horn antennas for terahertz quantum cascade lasersâ€, ELECTRONICS LETTERS, 2013.

      [2] Ramaccia, D., Bilotti, F., Toscano, A. & Massaro, A. “Efficient and wideband horn nanoantenna†OPTICS LETTERS, 2011. https://doi.org/10.1364/OL.36.001743.

      [3] Lukas Novotny1, “Antennas for light†nature photonics,2011.

      [4] Alu`& Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas†The American Physical Society, 2010. https://doi.org/10.1103/PhysRevLett.104.213902.

      [5] Solís, D. M., Taboada, J. M., Obelleiro, F. & Landesa, L. “Optimization of an optical wireless nanolink using directive nanoantennas†Optical Society of America, 2013. https://doi.org/10.1364/OE.21.002369.

      [6] Dregely, D. et al. “Imaging and steering an optical wireless nanoantenna link†NATURE COMMUNICATIONS, 2014. https://doi.org/10.1038/ncomms5354.

      [7] Kim, J. et al. “Babinet-Inverted Optical Yagi− Uda Antenna for Unidirectional Radiation to Free Space†NANO LETTERS, 2014. https://doi.org/10.1021/nl500062f.

      [8] Huang, J., Feichtner, T., Biagioni, P. & Hecht, B. “Impedance matching and emission properties of nanoantennas in an optical Nano circuit†NANO LETTERS, 2009. https://doi.org/10.1021/nl803902t.

      [9] Gurto, A. G. et al. “Unidirectional emission of a quantum dot coupled to a nanoantenna†AAAS SCIENCE, 2010. https://doi.org/10.1126/science.1191922.

      [10] Akselrod, G. M. et al. “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennasâ€, 2014. https://doi.org/10.1038/nphoton.2014.228.

      [11] Yang, Y., Li, Q. & Qiu, M. “Controlling the angular radiation of single emitters using dielectric patch nanoantennas†OPTICS LETTERS, 2015. https://doi.org/10.1063/1.4927401.

      [12] Yang, Y., Zhao, D., Gong, H., Li, Q. & Qiu, M. “Plasmonic sectoral horn nanoantennas†APPLIED PHYSICS LETTERS, 2014. https://doi.org/10.1364/OL.39.003204.

      [13] Guo, R. et al. “Plasmonic Fano Nanoantennas for on-chip separation of wavelength-encoded optical signals†NANO LETTERS, 2015. https://doi.org/10.1109/MetaMaterials.2015.7342585.

      [14] Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. “Planar photonics with metasurfaces†AAAS SCIENCE, 2013. https://doi.org/10.1126/science.1232009.

      [15] Zhao, H., Yang, Y., Li, Q. & Qiu, M. “Sub-wavelength quarter-wave plate based on plasmonic patch antennas†APPLIED PHYSICS LETTERS, 2013. https://doi.org/10.1063/1.4858255.

      [16] Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. “Nanoantenna-enhanced gas sensing in a single tailored nanofocus†NATURE MATERIALS, 2011. https://doi.org/10.1364/CLEO_SI.2011.PDPC11.

      [17] Law, S., Yu, L., Rosenberg, A. & Wasserman, D. “All-semiconductor plasmonic nanoantennas for infrared sensing†NANO LETTERS, 2013. https://doi.org/10.1364/CLEO_QELS.2014.FM2K.1.

      [18] Kauranen, M. & Zayats, A. V. “Nonlinear plasmonics. Nature Photonâ€, 2012. https://doi.org/10.1038/nphoton.2012.244.

      [19] Bar-Lev, D. & Scheuer, J. “Efficient second harmonic generation using nonlinear substrates patterned by nano-antenna arrays†OPTICS EXPRESS, 2013. https://doi.org/10.1364/OE.21.029165.

      [20] Zhang, R. et al. “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering†N AT U R E,2013.

      [21] Punj, D. et al. “A plasmonic ‘antenna-in-box’ platform for enhanced single-molecule analysis at micromolar concentrations†NATURE NANOTECHNOLOGY, 2013. https://doi.org/10.1038/nnano.2013.98.

      [22] Kumud Ranjan Jha & G. Singh. “Terahertz planar antennas for future wireless communication: Atechnical review†Elsevier, 2013.

      [23] Isha Malhotra, et al. “Terahertz antenna technology for imaging applications: a technical review†International Journal of Microwave and Wireless Technologies 2017.

      [24] Saeed I. Latif, et al. “A Directional Antenna in a Matching Liquid for Microwave Radar Imaging†Hindawi, 2015. https://doi.org/10.1155/2015/751739.

      [25] DWIGHT L. WOOLARD, et al. “Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications?†PROCEEDINGS OF THE IEEE 2005. https://doi.org/10.1109/JPROC.2005.853539.

      [26] Sumukha Prasad, et al. “Design and Analysis of a Nano Horn Antenna for Harnessing Solar Energy†International Journal of Current Engineering and Technology, 2014.

      [27] Davide Ramaccia and et.al. “Electrical and Radiation Properties of a Horn Nano-Antenna at Near Infrared Frequencies†IEEE, 2011. https://doi.org/10.1109/APS.2011.5997007.

      [28] ADEEL AFRIDI AND S¸ ÜKRÜ EKIN KOCABAS “Beam steering and impedance matching of plasmonic horn nanoantennas†optics express, 2016. https://doi.org/10.1364/OE.24.025647.

      [29] Yuanqing Yang et. al “Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas†Scientific Reports, 2016. https://doi.org/10.1038/srep19490.

      [30] A. Alù and N. Engheta, “Three-dimensional Nano transmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterialsâ€, 2007. https://doi.org/10.1103/PhysRevB.75.024304.

      [31] A. Alù and N. Engheta, “Optical Nano transmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimesâ€, 2006. https://doi.org/10.1364/JOSAB.23.000571.

      [32] Likith N and at. Al, “Design & Analysis of S-Band Right Hand Circularly Polarized Conical Horn Antenna for NavIC Receiver†SPC, 2018.

  • Downloads

  • How to Cite

    Maryam Abbas Mohammed, D., Mohammed Ali, F., & M. Wadi, S. (2019). A new design and simulation of cylindrical-gold horn Nano-antenna at terahertz region for energy harvesting application. International Journal of Engineering & Technology, 7(4), 6248-6251. https://doi.org/10.14419/ijet.v7i4.28788