Development of Android-based Rabbit Disease Expert System

  • Authors

    • Dyah Ayu Irawati
    • Yan Watequlis Syaifudin
    • Fabiola Ester Tomasila
    • Awan Setiawan
    • Erfan Rohadi
    https://doi.org/10.14419/ijet.v7i4.36.28978
  • expert system, naïve bayes, certainty factor, rabbit disease.
  • Abstract

    Many rabbit keepers or breeders are panics when their rabbit has an illness. This paper proposed an expert diagnostic system application for Android-based rabbit disease using the Naïve Bayes method to determine the illness and Certainty Factor for the trust value of the condition by combining the rate of the trust of users and experts due to diagnose the diseases of the rabbit.

    The testing was using 65 data learning and 160 data learning to test the naïve Bayes method. Furthermore, the certainty factor is using CF user 1 and its variation.

    The results obtained for 65 data learning is 53%, while 160 data learning is 73%. With the naïve Bayes method, it can be concluded that the more data learning, the better and more accurate the system. The results of conformity with the testing data obtained from the variative CF user value, namely 53% accordingly, 13% inappropriate, 33% near. The effect of compliance with the sample data collected from the CF value of user 1 is 53% appropriate, 7% inappropriate, 40% is near. With the certainty factor method, it can be concluded that differences in user input values affect the overall CF value.

     

  • References

    1. [1] Arsawijaya, Primaniartha (2016), Implementasi Metode Naïve Bayes Pada Sistem Pakar Diagnosa Gangguan Sistem Pernapasan Pada Anak. Semarang.

      [2] Burhani, Ananda Ayu Zahara (2014), Sistem Pakar Diagnosis Penyakit Pada Kelinci Menggunakan Metode Certainty Factor, Jurnal Informatika Polinema, Volume:1, Edisi:1. November 2014

      [3] Global-digital-report (2018), We Are Social, https://wearesocial.com/blog/2018/01/global-digital-report-2018

      [4] Muhamad, Kanda Y. Kusumaningtyas, Pratiwi (2013), “Hewan Kesayangan†Penebar Swadaya. Jakarta

      [5] Natalius, Samuel (2011), Metoda Naïve Bayes Classifier dan Penggunaannya pada Klasifikasi Dokumen, Institut Teknologi Bandung

      [6] Sari, Hefti Budiana (2016), Sistem Pakar Diagnosa Penyakit Pada Kelinci Dengan Metode Forward Chaining. Yogyakarta.

      [7] Syaifudin, Yan Watequlis., Pengembangan Sistem Pakar Pengenalan Kepribadian Diri dengan Pendekatan Teori Myers-briggs Type Indicator. Proceeding SENDI_U, 2016

      [8] Syatibi, Mustafid, Satoto (2012), Sistem Pakar Diagnosa Awal Penyakit Kulit Sapi Berbasis Web dengan Menggunakan Metode Certainty Factor. Masters Thesis, Diponegoro University.

      [9] Wijaya, K.K. (2015), Berapa jumlah pengguna website, mobile, dan media sosial di Indonesia? dari http://id.techinasia.com/

  • Downloads

  • How to Cite

    Ayu Irawati, D., Watequlis Syaifudin, Y., Ester Tomasila, F., Setiawan, A., & Rohadi, E. (2018). Development of Android-based Rabbit Disease Expert System. International Journal of Engineering & Technology, 7(4.36), 1312-1317. https://doi.org/10.14419/ijet.v7i4.36.28978

    Received date: 2019-04-25

    Accepted date: 2019-04-25