Surface processing to improve the fatigue strength of bainitic steels – An overview

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Currently, one of the major challenges for automotive industries is to reduce the weight and energy consumption of vehicles by using stronger and advanced low-cost materials. Conventional solutions using quenched and tempered steels not always fulfill the desired technical, economic and environmental requirements. Modern continuous cooling bainitic steels can provide a good combination of mechanical strength and toughness, being considered an excellent alternative to replace quenched and tempered martensitic steels in the manufacture of forged components. To meet the desired industry standards in highly loaded components, properties like surface hardness, fatigue strength, wear and friction resistance of these steels can be further improved by subsequent mechanical and thermochemical treatments. Therefore, this paper presents the state of the art in the use of continuous cooling bainitic steels for forging and low energy consumption surface improvement techniques such as: deep rolling and plasma nitriding. Finally, case studies are presented, and conclusions drawn on the current trends and reported practices. Surface modification techniques must be carefully controlled and combined with the material of interest to ensure that undesirable characteristics are not introduced during the manufacturing of the components. The development of processes based on the use of forged continuous cooling bainitic steels can be an excellent alternative to replace the conventional quenching and tempering treatment with considerable reduction of the energy consumption.

     


  • Keywords


    Bainitic Steels; Deep Rolling; Plasma Nitriding; Energy Saving; Automotive Applications.

  • References


      [1] Capuano, L. Available online: https://www.eia.gov/pressroom/presentations/capuano_07242018.pdf (accessed on 10 March 2019).

      [2] Hatwig, R. A.; Heck, N. C. ; Rocha, A. S. Novos aços bainíticos para forjamento. In International Forging Conference (SENAFOR), Porto Alegre, Brasil, 2016. (in Portuguese)

      [3] Bhadeshia, H. K. D. H. Bainite in steels: theory and practice, 3rd ed.; Maney Publisching: Cambridge, 2015.

      [4] Raedt, H.-W.; Speckenheuer, U.; Vollrath, K. New forged steels: energy-efficient solutions for stronger parts. ATZ autotechnology. 2012, 12, 12–17. https://doi.org/10.1365/s35595-012-0089-9.

      [5] Buchmayr, B. Critical assessment 22: bainitic forging steels. Mater. Sci. Technol. 2016, 32, 517–522. https://doi.org/10.1080/02670836.2015.1114272.

      [6] Bleck, W.; Prahl, U.; Hirt, G.; Bambach, M. Designing new forging steels by ICMPE. In Advances in Production Technology, ed. C. Brecher; Springer: Cham Heidelberg, 2015; Chap. 7, pp. 85–98. https://doi.org/10.1007/978-3-319-12304-2_7.

      [7] Wang, J.; van der Wolk, P. J.; van der Zwaag, S. On the influence of alloying elements on the bainita reaction in low alloy steels during continuous cooling. J. Mater. Sci. 2000, 35, 4393–4404. https://doi.org/10.1023/A:1004865209116.

      [8] Caballero, F. G.; Bhadeshia, H. K. D. H.; Mawella, K. J. A.; Jones, D. G.; Brown, P. Design of novel high strength bainitic steels: Part 2. Mater. Sci. Technol. 2001, 17, 517–522. https://doi.org/10.1179/026708301101510357.

      [9] Caballero, F. G.; Garcia-Mateo, C.; Miller, M. K. Modern steels at atomic and nanometer scales. Mater. Sci. Technol. 2014, 31, 764–772. https://doi.org/10.1179/1743284714Y.0000000685.

      [10] Rose, A. J.; Mohammed, F.; Smith, A. W. F.; Davies, P. A.; Clarke, R. D. Superbainite: laboratory concept to commercial product. Mater. Sci. Technol., 2014, 30, 1094–1098. https://doi.org/10.1179/1743284714Y.0000000504.

      [11] Garbarz, B.; Marcisz, J.; Burian, W. Technological peculiarities of manufacturing nanobainitic steel plates. In METEC and 2nd ESTAD Conf., Düsseldorf, 2015.

      [12] Fischer, M.; Henning, H.-H.; Bleck, W.; Huskic, A.; Kazhai, M.; Hadifi, T.; Bouguecha, A.; Behrens, B.-A. EcoForge: Enerigeeffiziente Prozesskette zur Herstellung von HochleistungsSchmiedebauteilen. J. Heat Treat. Mater. 2014, 69, 209–219. (in German) https://doi.org/10.3139/105.110220.

      [13] Keul, C.; Wirths, V.; Bleck, W. New bainitic steel for forgings. Arch. Civ. Mech. Eng. 2012, 12, 119–125. https://doi.org/10.1016/j.acme.2012.04.012.

      [14] Zajac, S.; Komenda, J.; Morris, P.; Dierickx, P.; Matera, S.; Penalba Diaz, F. Quantitative structure–property relationship for complex bainitic microstructures. In Technical Steel Research report no. EUR 21245EN. European Commission, Luxembourg, 2005.

      [15] Luo, Y.; Peng, J.; Wang, H.; Wu, X. Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel. Mater. Sci. Eng. A. 2010, 527, 3433–3437. https://doi.org/10.1016/j.msea.2010.02.010.

      [16] Lembke, M. I.; Olschewki, G.; Roelofs, H.; Klümper-Westkamp, H. Nitrieren von hochfesten, bainitischen langprodukten. J. Heat Treat. Mat. 2014, 69, 195–200. (in German) https://doi.org/10.3139/105.110226.

      [17] Merkel, C.; Engineer, J. Hochfester bainitischer stahl 20MnCrMo7 für umformanwendungen. Schmiede Journal. 2014, 38–41. (in German)

      [18] Bruchwald, O.; Frackowiak, W.; Bucquet, T.; Huskic, A.; Reimche, W.; Maier, H. J. In-situ-erfassung der werkstoffumwandlung und gefügeausbildung von schmiedebauteilen im abkühlpfad. J. Heat Treat. Mat. 2015, 70, 150–161. (in German) https://doi.org/10.3139/105.110259.

      [19] Roelofs, H.; Hasler, St.; Urlau, U.; Lembke, M. I.; Olschewski, G. Continuously cooled bainitic steel HSX®Z12: one decade of experience. In International Conference on Steels in Cars and Trucks, Braunschweig, Germany, 2014.

      [20] Abdalla, A. J.; Santos, D.; Vasconcelos, G.; Baggio-Scheid, V. H.; Silva, D. F. Changing in fatigue life of 300 M bainitic steel afeter laser carburizing and plasma nitriding. In International Fatigue Congress (MATEC Web of Conferences), 2018. https://doi.org/10.1051/matecconf/201816521002.

      [21] Genel, K.; Demirkol, M.; Çapa, M. Effect of ion nitriding on fatigue behavior of AISI 4140 steel. Mater. Sci. Eng. A. 2000, 279, 207–216. https://doi.org/10.1016/S0921-5093(99)00689-9.

      [22] Suh, C. M.; Hwang, J. K.; Son, K. S.; Jang, H. K. Fatigue characteristics of nitrided SACM 645 according to the nitriding condition and notch. Mater. Sci. Eng. A. 2005, 392, 31–37. https://doi.org/10.1016/j.msea.2004.07.066.

      [23] Zhang, P.; Zhang, F. C.; Yan, Z. G.; Wang, T. S.; Qian, L. H. Wear property of low temperature bainite in the surface layer of a carburized low carbon steel. Wear. 2011, 271, 697–704. https://doi.org/10.1016/j.wear.2010.12.025.

      [24] Rakhit, A. K. Heat treatment of gears: a practical guide to engineers; ASM International: Materials Park, 2000.

      [25] Davis, J. R. Gear materials, properties, and manufacture; ASM International: Materials Park, 2005.

      [26] Leitão, C. J.; Mei, P. R.; Libardi, R. Efeitos da cementação e da nitretação no custo e na qualidade de engrenagens produzidas com aços ABNT 4140 e 8620. Tecnologia em Metalurgia, Materiais e Mineração. 2012, 9, 257–263. (in Portuguese) https://doi.org/10.4322/tmm.2012.036.

      [27] Rego, R.; Löpenhaus, C.; Gomes, J.; Klocke, F. Residual stress interaction on gear manufacturing. J. Mater. Process. Technol. 2018, 252, 249–258. https://doi.org/10.1016/j.jmatprotec.2017.09.017.

      [28] Skonieski, A. F. O.; Lima, E. S.; Hirsch, T.; Rocha, A. S. Heterogeneidade de temperaturas em fornos de nitretação a plasma. Estudos Tecnológicos. 2008, 4, 37–43. (in Portuguese)

      [29] Leskovsek, V.; Podgornik, B.; Nolan, D. Modelling of residual stress profiles in plasma nitrided tool steel. Mater. Charact. 2008, 59, 454–461. https://doi.org/10.1016/j.matchar.2007.03.009.

      [30] Ochao, E. A.; Wisnivesky, D.; Minea, T.; Ganciu, M.; Tauziede, C.; Chapon, P.; Alvarez, F. Microstructure and properties of the compound layer obtained by pulsed plasma nitriding in steel gears. Surf. Coat. Technol. 2009, 203, 1457–1461. https://doi.org/10.1016/j.surfcoat.2008.11.025.

      [31] Podgornik, B.; Leskovsek, V.; Kovacic, M.; Vizintin, J. Analysis and prediction of residual stresses in nitrided tool steel. Mater. Sci. Forum, 2011, 681, 352–357. https://doi.org/10.4028/www.scientific.net/MSF.681.352.

      [32] Rolinski, E. Deep nitriding for gear applications and their partial treatments: plasma/ion nitriding meets demanding gear applications by increase load capacity of gears and increased fatigue strength of components as well as less complicated masking treatments. In Gears Solutions, 2016.

      [33] Silva, A. L. V. C.; Mei, P. R. Aços e ligas especiais. 2nd ed.; Edgard Blücher: São Paulo, 2006. (in Portuguese)

      [34] Chiaverini, V. Tratamento térmico das ligas metálicas. 1st ed.; Associação Brasileira de Metalurgia e Materiais: São Paulo, 2008. (in Portuguese)

      [35] Hoja, S.; Hoffmann, F.; Zoch, H.-W.; Schurer, S.; Tobie, T.; Stahl, K. Design of deep nitriding treatments for gears. J. Heat Treat. Mat. 2015, 70, 276–285. https://doi.org/10.3139/105.110271.

      [36] Abrão, A. M.; Denkena, B.; Köhler, J.; Breidenstein, B.; Mörke, T.; Rodrigues, P. C. M. The influence of heat treatment and deep rolling on the mechanical properties and integrity of AISI 1060 steel. J. Mater. Process. Technol. 2014, 21, 3020–3030. https://doi.org/10.1016/j.jmatprotec.2014.07.013.

      [37] Abrão, A. M.; Denkena, B.; Breidenstein, B.; Mörke, T. Surface and subsurface alterations induced by deep rolling of hardened AISI 1060 steel. Production Engineering. 2014, 8, 551–558. https://doi.org/10.1007/s11740-014-0539-x.

      [38] Abrão, A. M.; Denkena, B.; Köhler, J.; Breidenstein, B.; Mörke, T. The influence of deep rolling on the surface integrity of AISI 1060 high carbon steel. Procedia CIRP. 2014, 13, 31–36. https://doi.org/10.1016/j.procir.2014.04.006.

      [39] Matlock, D. K.; Alogab, K. A.; Richards, M. D.; Speer, J. G. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications. Materials Research. 2005, 453-459. https://doi.org/10.1590/S1516-14392005000400017.

      [40] Richards, M. D.; Matlock, D. K.; Speer, J. G. Deep rolling response of notched me­dium carbon bar steels. In SAE Technical Publication, no. 2004-01-1528. SAE International, Warrendale, PA, 2004. https://doi.org/10.4271/2004-01-1528.

      [41] SSAB Tunnplat. Sheet steel handbook: design and fabrication in high strength sheet steel; SSAB Tunnplat AB: Sweden, 1996.

      [42] SSAB Tunnplat. Sheet steel forming handbook: size shearing and plastic forming; SSAB Tunnplat AB: Sweden, 1998.

      [43] SSAB Tunnplat. Sheet steel joining handbook: joining of high strength steels; SSAB Tunnplat AB: Sweden, 2004.

      [44] Davies, G. Materials for automotive bodies. Elsevier: Butterworth Heinemann, 2012.

      [45] Verlinden, B.; Driver, J.; Samajdar, I.; Doherty, R. D. Thermo-mechanical processing of metallic materials. 1st ed.; Elsevier: Amsterdam, 2007.

      [46] Nanda, T.; Singh, V.; Singh, V.; Chakraborty, A.; Sharma, S. Third generation of advanced high-strength steels: processing routes and properties. Journal of Materials: Design and Applications. 2016, 1–30.

      [47] Gladman, T. The physical metallurgy of microalloyed steels. 1st ed.; Institute of Materials: London, 1997.

      [48] Bhadeshia, H. K. D. H.; Honeycombe, R. W. K. Steel: microstructure and properties. 3rd ed.; Elsevier: Cambridge, 2006.

      [49] DeGarmo, E. P.; Black, J. T.; Kohser, R. A. Materials and process in manufacturing. 9th ed.; Wiley, 2003.

      [50] Zhao, J.; Jiang, Z. Thermomechanical processing of advanced high strength steels. Prog. Mater. Sci. 2018, 94, 174–242. https://doi.org/10.1016/j.pmatsci.2018.01.006.

      [51] Ghosh, A.; Das, S.; Chatterjee, S.; Mishra, B.; Rao, P. R. Influence of thermo-mechanical processing and different post-cooling techniques on structure and properties of an ultra-low carbon Cu bearing HSLA forging. Mater. Sci. Eng. A. 2003, 348, 299-308. https://doi.org/10.1016/S0921-5093(02)00735-9.

      [52] Militzer, M. Comprehensive materials processing. In Thermomechanical processed steels. Elsevier: Vancouver, 2014. Volume 1, pp. 191–216. https://doi.org/10.1016/B978-0-08-096532-1.00115-1.

      [53] Tamura, I.; Sekine, H.; Tanaka, T.; Ouchi, C. Thermomechanical processing of high-strength low-alloy steels. Butterworth: London, 1988.

      [54] Maity, S. K.; Ballal, N. B.; Kawalla, R. Development of process for thermomechanical treatment of ultrahigh strength steel prepared by electroslag refining. Ironmaking & Steelmaking. 2007, 34, 332–342. https://doi.org/10.1179/174328107X168156.

      [55] Hasler, S.; Roelofs, H.; Lembke, M.; Caballero, F.G. New air-cooled steels with outstanding impact toughness. In International Conference on Steels in Cars and Trucks. Salzburg, 2011.

      [56] Eggbauer, G.; Buchmayr, B. High-strength bainitic steels for forged products. Springer-Verlag Wien, 2015, 160, 209–213. https://doi.org/10.1007/s00501-015-0351-8.

      [57] Caballero, F. G.; Santofimia, M. J.; García-Mateo, C.; Chao, J.; Garcia De Andres, C. Theoretical design and advanced microstructure in super high strength steels. Mater. Des. 2009, 30, 2077–2083. https://doi.org/10.1016/j.matdes.2008.08.042.

      [58] He, J.; Zhao, A.; Huang, Y.; Zhi, C.; Zhao, F. Acceleration of bainite transformation at low temperature by warm rolling process. Materials Today: Proceedings. 2015, 2, 289–294. https://doi.org/10.1016/j.matpr.2015.05.040.

      [59] Zhenyao, S.; Zhichao, W.; Zhuang, L.; Shuai, W.; Jijie, W. Effect of thermomechanical processing on the microstructure and mechanical properties of low carbon steel. In International Conference on Advanced Design and Manufacturing Engineering, 1984–1989, 2015.

      [60] Zhao, J.; Jiang, Z. Rolling of advanced high strength steels: theory, simulation and practice. CRC Press: Australia, 2017. https://doi.org/10.1201/9781315120577.

      [61] Caballero, F. G.; Roelofs, H.; Hasler, St.; Capdevila, C.; Chao, J.; Cornide, J.; Garcia-Mateo, C. Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater. Sci. Technol. 2012, 28, 95–102. https://doi.org/10.1179/1743284710Y.0000000047.

      [62] Eggbauer, G.; Weber, A.; Lechleitner, J.; Buchmayr, B. Charakterisierung bainitischer gefügezustände in schmiedestählen. Berg-und Hüttenmännische Monatshefte. 2014, 159, 194–200. (in German) https://doi.org/10.1007/s00501-014-0244-2.

      [63] Wirths, V.; Wagener, R.; Bleck, W.; Melz, T. Bainitic forging steels for cyclic loading. Adv. Mater. Res. 2014, 922, 813–818. https://doi.org/10.4028/www.scientific.net/AMR.922.813.

      [64] Sourmail, T.; Smanio, V.; Ziegler, C.; Heuer, V.; Kuntz, M.; Caballero, F. G.; Garcia-Mateo, C.; Cornide, J.; Elvira, R.; Leiro, A.; Vuorinen, E.; Teeri, T. Novel nanostructured bainitic steel grades to answer the need for high-performance steel components (NANOBAIN). In Research Fund for Coal and Steel Publications. European Commission, 2013.

      [65] Caballero, F. G.; Santofimia, M. J.; Capdevila, C.; García-Mateo, C.; Garcia De Andres, C. Design of advanced bainitic steels by optimization of TTT diagrams and T0 curves. ISIJ International. 2006, 46, 1479–1488. https://doi.org/10.2355/isijinternational.46.1479.

      [66] Wirths, V.; Elek, L.; Bleck, W.; Wagener, R.; Melz, T. Karbidfreie bainitische schmiedestähle mit verbesserter betriebsfestigkeit. Schmiede Journal. 2015, 28–32. (in German)

      [67] Terzic, A.; Calcagnotto, M.; Guk, S.; Schulz, T.; Kawalla, R. Influence of boron on transformation behavior during continuous cooling of low alloyed steels. Mat. Sci. Eng. A. 2013, 584, 32–40. https://doi.org/10.1016/j.msea.2013.07.010.

      [68] Song, T.; Cooman, B. C. Effect of boron on the isothermal bainite transformation. Metall. Mater. Trans. A. 2013, 44, 1686–1705. https://doi.org/10.1007/s11661-012-1522-9.

      [69] Caballero, F. G.; Bhadeshia, H. K. D. H.; Mawella, K. J. A.; Jones, D. G.; Brown, P. Design of novel high strength bainitic steels: Part 1. Mater. Sci. Technol. 2001, 17, 512–516. https://doi.org/10.1179/026708301101510348.

      [70] Gomez, G.; Perez, T.; Bhadeshia, H. K. D. H. Air cooled bainitic steels for strong, seamless pipes. Part 1 – alloy design, kinetics and microstructure. Mater. Sci. Technol. 2009, 25, 1501–1507. https://doi.org/10.1179/174328408X388130.

      [71] Gomez, G.; Perez, T.; Bhadeshia, H. K. D. H. Air cooled bainitic steels for strong, seamless pipes. Part 2 – properties and microstructure of rolled material. Mater. Sci. Technol. 2009, 25, 1508–1512. https://doi.org/10.1179/174328408X388149.

      [72] Hasler, S. Bainitischer stahl swissbain-7MnB8 senkt herstellungskosten. Stahl Und Eisen. 2014, 134, 58–60. (in German)Engineer, S.; Merkel, C.; Wewers, B. EZM mark 20MnCrMo7 – ein neuer hochfester bainitischer stahl. In Product brochure, 2014. (in German)

      [73] Caballero, F. G.; Capdevila, C.; Chao, J.; Cornide, J.; Garcia-Mateo, C.; Roelofs, H.; Hasler, S.; Mastrogiacomo, G. The Microstructure of continuously cooled tough bainitic steels. In International Conference on Super high strength steel, Peschiera, Italy, 2010.

      [74] Khodabandeh, A. R.; Jahazi, M.; Yue, S. Aghdashi, S. T. The determination of optimum forging conditions for the production of high strength-high impact toughness automotive parts. Mater. Manuf. Process. 2006, 21, 105–110. https://doi.org/10.1080/AMP-20060666.

      [75] Lemaitre, C.; Dierickx, P.; Bittes, G. Steels for high-performance diesel engines. Iron and Steel Technology. 2007, 4, 66–73.

      [76] Garcia-Mateo, C.; Caballero, F. G. Ultra-high-strength bainitic steels. ISIJ International. 2005, 45, 1736–1740. https://doi.org/10.2355/isijinternational.45.1736.

      [77] Timokhina, I. B.; Beladi, H.; Xiong, X. Y.; Adachi, Y.; Hodgson, P. D. Nanoscale microstructural characterization of a nanobainitc steel. Acta Mater. 2011, 59, 5511–5522. https://doi.org/10.1016/j.actamat.2011.05.024.

      [78] Beladi, H.; Adachi, Y.; Timokhina, I.; Hodgson, P. D. Crystallographic analysis of nanobainitic steels. Scripta Mater. 2009, 60, 455–458. https://doi.org/10.1016/j.scriptamat.2008.11.030.

      [79] Beladi, H.; Tari, V.; Timokhina, I. B.; Cizek, P.; Rohrer, G. S.; Rollett, A.; Hodgson, P. D. On the crystallographic characteristics of nanobainitic steel. Acta Mater. 2017, 127, 426–437. https://doi.org/10.1016/j.actamat.2017.01.058.

      [80] Wang, T. S.; Yang, J.; Shang, C. J.; Li, X. Y.; Lv, B.; Zhang, M.; Zhang, F. C. Sliding friction surface microstructure and wear resistance of 9SiCr steel with low temperature austempering treatment. Surf. Coat. Technol. 2008, 202, 4036–4040. https://doi.org/10.1016/j.surfcoat.2008.02.013.

      [81] Narayanaswamy, B.; Hodgson, P.; Timokhina, I.; Beladi, H. The impact of retained austenite characteristics on the two-body abrasive wear behavior of ultrahigh strength bainitic steels. Metall. Mater. Trans. A. 2016, 47, 4883–4895. https://doi.org/10.1007/s11661-016-3690-5.

      [82] Fabijanic, D.; Timokhina, I.; Beladi, H.; Hodgson, P. The nitrocarburising response of low temperature bainite steel. Metals. 2017, 7, 1–8. https://doi.org/10.3390/met7070234.

      [83] Groche, P.; Engels, M.; Steitz, M.; Mueller, C.; Scheil, J.; Heilmaier, M. Potential of mechanical surface treatment for mould and die production. Int. J. Mater. Res. 2012, 103, 783–789. https://doi.org/10.3139/146.110778.

      [84] Abrão, A. M.; Denkena, B.; Köhler, J.; Breidenstein, B.; Mörke, T. The inducement of residual stress through deep rolling of AISI 1060 steel and its subsequent relaxation under cyclic loading. Int. J. Adv. Manufact. Technol. 2015, 79, 1939–1947. https://doi.org/10.1007/s00170-015-6946-0.

      [85] Magalhães, F. C.; Abrão, A. M.; Denkena, B.; Breidenstein, B.; Mörke, T. Analytical modeling of surface roughness, hardness and residual stress induced by deep rolling. J. Mater. Eng. Perform. 2017, 26, 876–884. https://doi.org/10.1007/s11665-016-2486-5.

      [86] Grabe, T. M.; Abrão, A. M.; Leal, C. A. A.; Denkena, B.; Breidenstein, B.; Meyer, K. Influência da operação de roleteamento sobre o acabamento e a resistência à fadiga do aço ABNT 4140. Acta Mechanìca et Mobilitatem. 2018, 3, 9–13. (in Portuguese)

      [87] Klocke, F.; Mader, S. Fundamentals of the deep rolling of compressor blades for turbo aircraft engines. Steel Research International. 2005, 76, 229–235. https://doi.org/10.1002/srin.200506001.

      [88] Delgado, P.; Cuesta, I. I.; Alegre, J. M.; Díaz, A. State of the art of deep rolling. Precision Engineering. 2016, 46, 1–10. https://doi.org/10.1016/j.precisioneng.2016.05.001.

      [89] Wong, C. C.; Hartawan, A.; Teo, W. K. Deep cold rolling of features on aero-engine components. Procedia CIRP. 2014, 13, 350–354. https://doi.org/10.1016/j.procir.2014.04.059.

      [90] Kloos, K. H.; Adelmann, J. Effect of deep rolling on fatigue properties of cast irons. J. Mechan. Beh. Mater. 1989, 2, 75–86. https://doi.org/10.1515/JMBM.1989.2.1-2.75.

      [91] Trauth, D.; Klocke, F.; Mattfeld, P.; Klink, A. Time-efficient prediction of the surface layer state after deep rolling using similarity mechanics approach. Procedia CIRP. 2013, 9, 29–34. https://doi.org/10.1016/j.procir.2013.06.163.

      [92] Scheil, J.; Müller, C.; Steitz, M.; Groche, P. Influence of process parameters on surface hardening in hammer peening and deep rolling. Key Engineering Materials. 2013, 554–557, 1819–1827. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1819.

      [93] Perenda, J.; Trajkovski, J.; Zerovnik, A.; Prebil, I. Residual stresses after deep rolling of a torsion bar made from high strength steel. J. Mater. Process. Technol. 2015, 218, 89–98. https://doi.org/10.1016/j.jmatprotec.2014.11.042

      [94] Prabhu, P. R.; Kulkarni, S. M.; Sharma, S. S.; Jagannath, K.; Bhat, C. Deep cold rolling process on AISI 4140 steel and optimization of surface roughness by response surface methodology. In International Conference on Mechanical, Production and Materials Engineering, 2012.

      [95] Michaud, H.; Sprauel, J. M.; Galzy, F. The residual stresses generated by deep rolling and their stability in fatigue & application to deep-rolled crankshafts. Mater. Sc. Forum. 2006, 524–525, 45–50. https://doi.org/10.4028/www.scientific.net/MSF.524-525.45.

      [96] Juijerm, P.; Altenberger, I. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110. Mater. Sci. Eng. A. 2007, 452–453, 475–48. https://doi.org/10.1016/j.msea.2006.10.074.

      [97] Juijerm, P.; Altenberger, I. Effective boundary of deep-rolling treatment and its correlation with residual stress stability of Al–Mg–Mn and Al–Mg–Si–Cu alloys. Scripta Mater. 2007, 56, 745–748. https://doi.org/10.1016/j.scriptamat.2007.01.021.

      [98] Altenberger, I.; Nalla, R. K.; Sano, Y.; Wagner, L.; Ritchie, R. O. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550 °C. Int. J. Fatigue. 2012, 44, 292–302. https://doi.org/10.1016/j.ijfatigue.2012.03.008.

      [99] Suchentrunk, R.; Fuesser, H. J.; Staudigl, G.; Jonke, D.; Meyer, M. Plasma surface engineering - innovative processes and coating systems for hig https://doi.org/10.1016/S0257-8972(98)00833-0.h-quality products. Surf. Coat. Technol. 1999, 112, 351–357.

      [100] Czerwinski, F. Thermochemical Treatment of Metals. In Heat Treatment - Conventional and Novel Applications. Intech: Canada, 2012. pp. 73–112. https://doi.org/10.5772/51566.

      [101] Jung, K. S. Nitriding of iron-based ternary alloys: Fe-Cr-Ti and Fe-Cr-Al. Doctoral Thesis – Universität Stuttgart. Stuttgart, 2011.

      [102] Karakan, M.; Alsaran, A.; Çelik, A. Effects of various gas mixtures on plasma nitriding behavior of AISI 5140 steel. Mater. Charact. 2003, 49, 241–246. https://doi.org/10.1016/S1044-5803(03)00010-X.

      [103] Sirin, S. Y.; Sirin, K.; Kaluc, E. Effect of the ion nitriding surface hardening process on fatigue behavior of AISI 4340 steel. Mater. Charact. 2008, 59, 351–358. https://doi.org/10.1016/j.matchar.2007.01.019.

      [104] Tong, W. P.; Tao, N. R.; Wang, Z. B.; Lu, J.; Lu, K. Nitriding iron at lower temperatures. Science. 2003, 299, 686–688. https://doi.org/10.1126/science.1080216.

      [105] Tong, W. P.; Tao, N. R.; Wang, Z. B.; Zhang, H. W.; Lu, J.; Lu, K. The formation of ε-Fe3–2N phase in a nanocrystalline Fe. Scripta Mater. 2004, 50, 647–650. https://doi.org/10.1016/j.scriptamat.2003.11.022.

      [106] Lin, Y.; Lu, J.; Wang, L.; Xu, T.; Xue, Q. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Mater. 2006, 54, 5599–5605. https://doi.org/10.1016/j.actamat.2006.08.014.

      [107] Tong, W. P.; Han, Z.; Wang, L. M.; Lu, J.; Lu, K. Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment. Surf. Coat. Technol. 2008, 202, 4957–4963. https://doi.org/10.1016/j.surfcoat.2008.04.085.

      [108] Bell, T.; Loh, N. L. The fatigue characteristics of plasma nitrided three pct Cr–Mo steel. J. Heat Treat. 1982, 2, 232–237. https://doi.org/10.1007/BF02833223.

      [109] Leppänen, R.; Johnsson, H. Properties of nitride components: a result of the material and the nitriding process. In Technical Report No. 1. Ovako Steel: Sweden, 1999.

      [110] Ashrafizadeh, F. Influence of plasma and gas nitriding on fatigue resistance of plain carbon (CK45) steel. Surf. Coat. Technol. 2003, 173/174, 1196–120. https://doi.org/10.1016/S0257-8972(03)00460-2.

      [111] Chang, D. Y.; Lee, S. Y.; Kang, S. G. Effect of plasma nitriding on the surface properties of the chromium diffusion coating layer in iron-base alloys. Surf. Coat. Technol. 1999, 116/119, 391–397. https://doi.org/10.1016/S0257-8972(99)00234-0

      [112] Okamoto, A.; Nakamura, H. The influence of residual stress on fatigue cracking. J. Pressure Vessel Technol. 1990, 112, 199–203. https://doi.org/10.1115/1.2928614.

      [113] Nicoletto, G.; Tucci, A.; Esposito, L. Sliding wear behavior of nitride and nitrocarburized cast irons. Wear, 1996, 197, 38–44. https://doi.org/10.1016/0043-1648(95)06753-1.

      [114] Sun, Y.; Bell, T. Plasma surface engineering of low alloy steel. Mater. Sci. Eng. A. 1991, 140, 419–434. https://doi.org/10.1016/0921-5093(91)90458-Y.

      [115] Tosic, M. M.; Terzic, I.; Gligorijevic, R.; Ognjanovic, M. Fatigue improvements of glow-discharge-plasma-nitrided steel rotary specimens. Surf. Coat. Technol. 1994, 63, 73–83. https://doi.org/10.1016/S0257-8972(05)80010-6.

      [116] Hussain, K.; Tauqir, A.; Haq, A. U, Khan, A. Q. Influence of gas nitriding on fatigue resistance of maraging steel. Int. J. Fatigue. 1999, 21, 163–168. https://doi.org/10.1016/S0142-1123(98)00063-2.

      [117] Rolinski, E.; Leclaire, F.; Clubine, D.; Sharp, G.; Boyer, D.; Notman, R. Kinetics of plasma nitriding and renitriding of 3% Cr-Mo-V steel. J. Mater. Eng. Perform. 2000, 9, 457–462. https://doi.org/10.1361/105994900770345863.

      [118] Rocha, A. S.; Strohaecker, T.; Hirsch, T. Effect of different surface states before plasma nitriding on properties and machining behavior of M2 high-speed steel. Surf. Coat. Technol. 2003, 165, 176–185. https://doi.org/10.1016/S0257-8972(02)00768-5.

      [119] Both, G. B.; Rocha, A. S.; Santos, G. R.; Hirsch, T. K. An investigation on the suitability of different surface treatments applied to a DIN X100CrMoV8-1-1 for cold forming applications. Surf. Coat. Technol. 2014, 244, 142–150. https://doi.org/10.1016/j.surfcoat.2014.01.060.

      [120] Nolan, D.; Leskovsek, V.; Jenko, M. Estimation of fracture toughness of nitride compound layer on tool steel by application of the Vickers indentation method. Surf. Coat. Technol. 2006, 201, 182–188. https://doi.org/10.1016/j.surfcoat.2005.11.077.

      [121] Batista, A. C.; Dias, A. M.; Lebrun, J. L.; Le Flour, J. C.; Inglebert, G. Contact fatigue of automotive gears: evolution and effects of residual stresses introduced by surface treatments. Fatigue Fract. Eng. Mater. Struct. 2000, 23, 217–228. https://doi.org/10.1046/j.1460-2695.2000.00268.x.

      [122] Li, W.; Liu, B. Experimental investigation on the effect of shot peening on contact fatigue strength for carburized and quenched gears. Int. J. Fatigue. 2018, 106, 103–113. https://doi.org/10.1016/j.ijfatigue.2017.09.015.

      [123] Terrin, A.; Dengo, C.; Meneghetti, G. Experimental analysis of contact fatigue damage in case hardened gears for off-highway axles. Eng. Fail. Anal. 2017, 76, 10–26. https://doi.org/10.1016/j.engfailanal.2017.01.019.

      [124] Boniardi, M.; D’errico, F.; Tagliabue, C. Influence of carburizing and nitriding on failure of gears – A case study. Eng. Fail. Anal. 2006, 13, 312–339. https://doi.org/10.1016/j.engfailanal.2005.02.021.

      [125] Gao, Y. Influence of deep-nitriding and shot peening on rolling contact fatigue performance of 32Cr3MoVA steel. J. Mater. Eng. Perform. 2008, 17, 455–459. https://doi.org/10.1007/s11665-007-9155-7.

      Tadi, A. J.; Hosseini, S. R.; Semiromi, M. N. Influence of surface nano/ultrafine formed via pre-deep rolling process on the plasma nitriding characteristics of the AISI 316L stainless steel. Int. Nano Letters. 2017, 7, 217–223. https://doi.org/10.1007/s40089-017-0218-y

 

View

Download

Article ID: 29483
 
DOI: 10.14419/ijet.v8i3.29483




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.