Effect of linkage design of an elbow implant on micro-motion: a finite element analysis

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    The major reason for total elbow arthroplasty failure is loosening. Loosening is the outcome of a detrimental mechanical incident, which causes the failure of the bond between the bone bed and implant. The shape of the linkage of an elbow implant has a considerable role to transfer a portion of the load to the cement-bone and cement-implant interfaces. Therefore, in this study, the linkage of an elbow implant was modified to reduce loosening using finite element analyses. Elbow bone was constructed using image processing software. Linkage components were modeled using modeling computer-aided design software. Material properties and boundary conditions were applied. The stress distribution and micro-motion were obtained in linkage component and cement-implant-bone interfaces respectively. Based on our results, sub-design 3B proved less interface micro-motion compared to others. Our study showed that modification of a linkage reduces the micro-motion transferred to bone-cement and cement-implant interfaces. A reduction of micro-motion, through linkage modification, may improve the clinical outcomes.

     

     


  • Keywords


    Elbow Implant; Finite Element Analysis; Loosening; Micro-Motion; Stress Distribution.

  • References


      [1] McDonald CP, Peters TM, Johnson JA & King GJW (2011), “Stem Abutment Affects Alignment of the Humeral Component in Computer- assisted Elbow Arthroplasty”, J Shoulder Elbow Surg., Vol. 20, pp.891-898. https://doi.org/10.1016/j.jse.2010.12.012.

      [2] Heidari M, Harun MN &Syahrom A (2014), “Influence of polyethylene thickness on axis pin in linked elbow implant”, Advanced Materials Research, Vol.845, pp.194-198. https://doi.org/10.4028/www.scientific.net/AMR.845.194.

      [3] An KN (2005), “Kinematics and Constraint of Total Elbow Arthroplasty”, J. Shoulder Elbow Surg., Vol. 14, pp.168-173. https://doi.org/10.1016/j.jse.2004.09.035.

      [4] Heidari M, Harun MN, Kadir MRA., Kashani J &Syahrom A (2013), “Effect of humeral stem shape on displacement in elbow implant”, Applied Mechanics and Materials, Vol. 393, pp.467-471. https://doi.org/10.4028/www.scientific.net/AMM.393.467.

      [5] Lee BP, Adams RA & Morrey BF (2005), “Polyethylene Wear After Total Elbow Arthroplasty”, J. Bone Joint Surg. Am, Vol. 87, pp.1080-1087. https://doi.org/10.2106/JBJS.D.02163.

      [6] Wright, TW & Hastings H (2005), “Total Elbow Arthroplasty Failure due to Overuse, C-ring Failure, and/or Bushing Wear”, J. Shoulder Elbow Surg., Vol. 14, pp.65-72. https://doi.org/10.1016/j.jse.2004.04.015.

      [7] Chafik D, O’Driscoll S, King GW & Yamaguchi K (2010), “Total Elbow Arthroplasty-Convertible”, Oper. Tech. Orthop., Vol. 20, pp.58-67. https://doi.org/10.1053/j.oto.2009.10.002.

      [8] Antuna S &Vallina V (2006), “Elbow Arthroplasty: Design, Indications and Results”, Rev. Ortop. Traumatol., Vol. 50, pp.55-67. https://doi.org/10.1016/S0482-5985(06)74934-3.

      [9] Austman RL, and Beaton BJB, Quenneville CE, King, GJW, Gordon KD & Dunning CE (2007), “The Effect of Distal Ulnar Implant Stem Material and Length on Bone Strains”, J. Hand Surg., Vol. 32, pp. 848-854. https://doi.org/10.1016/j.jhsa.2007.03.013.

      [10] Heidari M, Rafiq MAK, Fallahiarezoodar A &Alizadeh M (2011), “Stress distribution analysis on semi constrained elbow prosthesis during flexion and extension motion”, IFMBE Proceedings, Vol. 35, pp.215-218. https://doi.org/10.1007/978-3-642-21729-6_57.

      [11] Heidari M, Rafiq MAK, Kashani J, Fallahiarezoodar A, Alizadeh M, Robson N, Kamarul T & Harun MN (2013), “Influences of rheumatoid arthritis on elbow: A finite element analysis”, J. Advanced Science Letters, Vol. 19, No. 11, pp.3219-3222. https://doi.org/10.1166/asl.2013.5127.

      [12] Trigg SD (2006), “Total Elbow Arthroplasty: Current Concepts”, Northeast Florida Med., Vol. 57, No. 3, pp.37-40

      [13] An KN (2005), “Kinematics and Constraint of Total Elbow Arthroplasty”, J. Shoulder Elbow Surg., Vol. 14, pp.168-173, 2005. https://doi.org/10.1016/j.jse.2004.09.035.

      [14] An K & Morrey BF, Biomechanics of the Elbow, The Elbow and its Disorders, WBSaunders: Philadelphia (2000).

      [15] Sotelo JS (2010), “Total Elbow Arthroplasty”, J. Open Orthop., Vol. 5, pp.115-123. https://doi.org/10.2174/1874325001105010115.

      [16] Heidari M., Harun MN, Rafiq MAK, Kashani J &Syahrom A (2013), “Effect of humeral stem shape on displacement in elbow implant”, Applied Mechanics and Materials, Vol. 393, pp.467-471. https://doi.org/10.4028/www.scientific.net/AMM.393.467.

      [17] Lee DH (2011), Linked Total Elbow Arthroplasty. Hand Clin., vol. 27, pp. 199-213. https://doi.org/10.1016/j.hcl.2011.01.004.

      [18] Cesar M, Roussanne Y, Bonnel F &Canovas F (2007), “GSB III Total Elbow Replacement in Rheumatoid Arthritis”, J. Bone Joint Surg. Br., Vol. 89, pp.330-334. https://doi.org/10.1302/0301-620X.89B3.18488.

      [19] Cheung EV & O’Driscoll SW (2007), “Total Elbow Prosthesis Loosening Caused by Ulnar Component Pistoning”, J Bone Joint Surg Am. Vol. 89, pp.1269-74. https://doi.org/10.2106/00004623-200706000-00015.

      [20] Hildebrand KA, Patterson SD, Regan WD, MacDermid JC & King GJ (2000), “Functional Outcome of Semiconstrained Total Elbow Arthroplasty”, J. Bone Joint Surg. Am., Vol. 82, pp. 1379-1386. https://doi.org/10.2106/00004623-200010000-00003.

      [21] Heidari M, Rafiq MAK, Fallahiarezoodar A, Harun MN, Alizadeh M &Kashani J (2012), “Biomechanical assessment of unconstrained elbow prosthesis after total elbow replacement: A finite element analysis”, Applied Mechanics and Materials, Vol. 234, pp.7-10. https://doi.org/10.4028/www.scientific.net/AMM.234.7.

      [22] Willing R, King GJW & Johnson JA (2012), “The Effect of Implant Design of Linked Total Elbow Arthroplasty on Stability and Stress: a Finite Element Analysis”, Computer Meth. Biomech. Biomed. Eng., pp.1-8.

      [23] Stokdijk M, Veeger HEJ, de Boera YA &Kozing PM (1999), “Determination of the Optimal Elbow Axis for Evaluation of Placement of Prosthses”, Clin. Biomechan., Vol. 4, pp. 177-184. https://doi.org/10.1016/S0268-0033(98)00057-6.

      [24] Kedgley AE, Lang P & Dunning CE (2007), “The Effect of Cross-Sectional Stem Shape on the Torsional Stability of Cemented Implant Components”, J. Biomech. Eng., Vol. 129, pp.310-314. https://doi.org/10.1115/1.2720907.

      [25] Godest AC, Beaugonin M, Haug E, Taylor M & Gregson PJ (2002), “Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis”, J. Biomech., Vol. 35, No. 2, pp.267-275. https://doi.org/10.1016/S0021-9290(01)00179-8.

      [26] Halloran JP, Petrella AJ &Rullkoetter PJ (2005), “Explicit Finite Element Modelling of Total Knee Replacement Mechanics”, J. Biomech., Vol. 38, No.2, pp. 323-331. https://doi.org/10.1016/j.jbiomech.2004.02.046.

      [27] Goel VK, Lee II-K & Blair WF (1989), “Effect of the Coonrad Elbow Prosthesis on Stresses in the Humerus”, J. Clin. Biomech., Vol. 4, pp.11-l6. https://doi.org/10.1016/0268-0033(89)90062-4.

      [28] Completo A, Pereira J, Fonseca F, Ramos A, Relvas C &Simões J (2011), “Biomechanical Analysis of Total Elbow Replacement with Unlinked iBP Prosthesis: An in Vitro and Finite Element Analysis”, Clin. Biomechan., Vol. 26, pp.990-997. https://doi.org/10.1016/j.clinbiomech.2011.06.008.

      [29] Amarasinghe RS, Rupasinghe RAM, Anurathan P &Herath SR (2011), “Effects of Geometry of the Interamedullary Stem of the Ulna Component of Hinged Elbow Joint Prostheses on the Bone and Implant Bending Stress”, J. Mech. Med.Biol., Vol. 11, No.5, pp.1271-1293. https://doi.org/10.1142/S0219519411004228.

      [30] Prasad N & Dent C (2010), “Outcome of Total Elbow Replacement for Rheumatoid Arthritis: Single Surgeon’s Series with Souter-Strathclyde and Coonrad-Morrey Prosthesis”, J. Shoulder Elbow Surg., Vol. 19, pp.376-683. https://doi.org/10.1016/j.jse.2009.09.016.

      [31] Closkey RF, Goode JR, Kirschenbaum D & Cody RP (2000), “The Role of the Coronoid Process in Elbow Stability. A Biomechanical Analysis of Axial Loading”, J. Bone Joint Surg. Am., Vol. 82, pp.1749-1753. https://doi.org/10.2106/00004623-200012000-00009.

      [32] Yongpravat C, Kim HM, Gardner TR, Bigliani LU, Levine WN & Ahmad GS (2013), “Glenoid Implant Orientation and Cement Failure in TotalShoulder Arthroplasty: A Finite Element Analysis”, J. Shoulder Elbow Surg., Vol. 22, pp.940-947. https://doi.org/10.1016/j.jse.2012.09.007.

      [33] Godest, AC, Beaugonin M, Haug E, Taylor M & Gregson PJ (2002), “Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis”, J. Biomech., Vol. 35, No. 2, pp.267-275. https://doi.org/10.1016/S0021-9290(01)00179-8.

      [34] Willing R & Kim IY (2009), “A Holistic Numerical Model to Predict Strain Hardening and Damage of UHMWPE Under Multiple Total Knee Replacement Kinematics and Experimental Validation”, J. Biomech. Vol. 42, No.15, pp.2520-2527. https://doi.org/10.1016/j.jbiomech.2009.07.008.

      [35] Matsoukas G, Willing R & Kim IY(2009), “Total Hip Wear Assessment: A Comparison Between Computational and in Vitro Wear Assessment Techniques Using ISO Loading and Kinematics”, J. Biomech. Eng.,1 Vol. 31, No.4, https://doi.org/10.1115/1.3049477.

      [36] Sneftrup SB, Jensen SL, Johannsen HV & Søjbjerg JO (2006), “Revision of Failed Total Elbow Arthroplasty with Use of a Linked Implant”, J. Bone & Joint, Vol. 88, No. 1, pp.78-83. https://doi.org/10.1302/0301-620X.88B1.16446.

      [37] Kleinlugtenbelt IV, Bakx PA &Huij J (2010), “Instrumented Bone Preserving elbow prosthesis in rheumatoid arthritis: 2–8 year follow-up”, J. Shoulder Elbow Surg. vol. 19, pp. 923-928. https://doi.org/10.1016/j.jse.2010.05.003.

      [38] Gilot G, Alvarez-Pinzon AM, Wright TW, Krill M, Routman HD & Zuckerman JD (2015), “The Incidence of Radiographic Aseptic Loosening of the Humeral Component in Reverse Total Shoulder Arthroplasty”, J. Shoulder Elbow Surg., Vol. 24, pp.1555-1559. https://doi.org/10.1016/j.jse.2015.02.007.


 

View

Download

Article ID: 30372
 
DOI: 10.14419/ijet.v9i2.30372




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.