Thermal performance for electromagnetohydrodynamic flow of non-Newtonian Casson fluid through porous microtube

 
 
 
  • Abstract
  • Keywords
  • References
  • Untitled
  • PDF
  • Abstract


    A theoretical investigation is done to analyze the heat transfer features of non-Newtonian Casson fluid in a porous microtube with electro kinetic effects associated with the applied magnetic field. The exact analytical solutions the velocity and temperature profiles of non-Newtonian Casson fluid in porous micro-tube related to combining effects of electromagnetohydrodynamics forces and electrokinetic forces have been obtained using a variation of parameter. Temperature and flow distribution characteristics of Casson fluid flow are controlled by the obtruded pressure-gradients, applied a magnetic field and electro-kinetic forces. The exciting features of the electromagnetohydrodynamics flow along with the features of the heat flow rate are examined by variation in the non-dimensional physical arguments on velocity and temperature functions. The effect of the Casson parameter on the velocity and temperature profiles has been investigated analyzed. The fluid flow rate and the heat transfer rate of Casson fluid within porous micro-tube is controlled by the strength applied electric and magnetic field.

     


  • Keywords


    Electromagnetohydrodynamic Flow; Microtube; Porous Medium; Casson Fluid.

  • References


      [1] M. J. Heller, An active microelectronics device for multiplex DNA analysis. IEEE Eng. Med. Biol., 15, (1996) 100– 103. https://doi.org/10.1109/51.486725.

      [2] R. G. Sosnowski, E. Tu, W. F. Butler, J. P. O'Connell, M. J. Heller, Rapid determination of single-base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl AcadSci U S A. Feb 18;94(4), (1997) 1119–1123. https://doi.org/10.1073/pnas.94.4.1119.

      [3] X. Xuan.; D. Li. Joule heating effects on peak broadening in capillary zone electrophoresis J. Micromech. Microeng. 14 (8), (1997) 1171– 1180. https://doi.org/10.1088/0960-1317/14/8/008.

      [4] S Das, T Das, S Chakraborty, Modeling of coupled momentum, heat, and solute transport during DNA hybridization in a microchannel in the presence of electro-osmotic effects and axial pressure gradients, Microfluidics and Nanofluidics 2 (1), (2006) 37-49. https://doi.org/10.1007/s10404-005-0052-9.

      [5] J. Jang, S. S. Lee, Theoretical and experimental study of MHD (magnetohydrodynamic) micropump, Sensors Actuators A: Phys., Vol. 80, (2000) 84-89. https://doi.org/10.1016/S0924-4247(99)00302-7.

      [6] G. H. Tang, P.X. Ye, W. Q. Tao. Pressure-driven and electroosmotic non-Newtonian flows through microporous media via lattice Boltzmann method, J. Non-Newtonian Fluid Mech. 165, (2010) 1536–1542. https://doi.org/10.1016/j.jnnfm.2010.08.002.

      [7] C. Zhao, C Yanga, Electro-osmotic mobility of non-Newtonian fluids Biomicrofluidics 5, (2011) 014110. https://doi.org/10.1063/1.3571278.

      [8] A. J. Chamkha, Flow of two-immiscible fluids in porous and nonporous channels J. Fluids Eng. 122(1), (2000) 117-124 https://doi.org/10.1115/1.483233.

      [9] A. J. Chamkha, Hydromagnetic two-phase flow in a channel, International Journal of Engineer-ing Sciences, 33(3), (1995) 437-446. https://doi.org/10.1016/0020-7225(93)E0006-Q.

      [10] A. J. Chamkha, M. Molana, A. Rahnama, F. Ghadami, On the nanofluids applications in micro-channels: a comprehensive review, Powder Technology, 332, (2018) 287-322. https://doi.org/10.1016/j.powtec.2018.03.044.

      [11] A. J. Chamkha, Unsteady hydromagnetic natural convection in a fluid-saturated porous medium channel, Advances in Filtration and Separation Technology, 10, (1996) 369-75.

      [12] A. J. Chamkha, Non-Darcy fully developed mixed convection in a porous medium channel with heat generation/absorption and hydromagnetic effects, Numerical Heat Transfer, 32, (1997) 653-75 https://doi.org/10.1080/10407789708913911.

      [13] H. A. Attia, M. E. Sayed-Ahmed, Transient MHD couette flow of a Casson fluid between parallel plates with heat transfer,” Italian Journal of Pure and Applied Mathematics, 27, (2010) 19–38. https://doi.org/10.4236/eng.2011.31005.

      [14] S. A. Shehzad, T. Hayat, M. Qasim, S. Asghar, Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction, Brazilian Journal of Chemical Engineering, 30, (2013) 187–195. https://doi.org/10.1590/S0104-66322013000100020.

      [15] M. Afikuzzaman, M. Ferdows, M. M. Alam, Unsteady MHD casson fluid flow through a parallel plate with hall current,” Procedia Engineering, 105(2015) 287–293. https://doi.org/10.1016/j.proeng.2015.05.111.

      [16] J. R. Buchanan, C. Kleinstreuer, J.K. Comer, Rheological effects on pulsatile hemodynamics in a stenosed tube, Comput. Fluids 29, (2000 695-724 https://doi.org/10.1016/S0045-7930(99)00019-5.

      [17] S. Chakravarty, Effects of stenosis on the flow-behavior of blood in an artery, Int. J. Eng. Sci. 25, (1987) 1003-1016. https://doi.org/10.1016/0020-7225(87)90093-0.

      [18] Y. I. Cho, K.R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flow, Biorheology 28, (1991) 241-262 https://doi.org/10.3233/BIR-1991-283-415.

      [19] D. N. Ku, Blood flow in arteries, Annu. Rev. Fluid Mech. 29, (1970) 399-434. https://doi.org/10.1146/annurev.fluid.29.1.399.

      [20] R. K Dash, K.N. Mehta, G. Jayaraman, Casson fluid flow in a pipe filled with a homogeneous porous medium, Int. J. Eng. Sci. 34, (1996) 1145-1156. https://doi.org/10.1016/0020-7225(96)00012-2.

      [21] M. Liu J. Yang, Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels, Microvasc Res,78(1), (2009) 14-9. https://doi.org/10.1016/j.mvr.2009.04.002.

      [22] M. Liu, Q. Guo, J. Yang, Modeling of electroosmotic pumping of non-conducting liquids and biofluids by a two-phase flow method, Journal of Electroanalytical Chemistry, 636, (2009) 86-92. https://doi.org/10.1016/j.jelechem.2009.09.015.

      [23] C. Ng, Combined pressure-driven and electroosmotic flow of Casson fluid through a slit microchannel, Journal of Non-Newtonian Fluid Mechanics, 198. (2013) 1-9. https://doi.org/10.1016/j.jnnfm.2013.03.003.

      [24] X. Chen, Y. Jian, Z. Xie, Z. Ding, Thermal transport of electromagnetohydrodynamic in a microtube with electrokinetic effect and interfacial slip, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 540, 5, (2018),194-206. https://doi.org/10.1016/j.colsurfa.2017.12.061.

      [25] K. Wang, F. Tavakkoli, S. Wang, K.Vafai, Forced convection gaseous slip flow in a porous circular microtube: An exact solution, International Journal of Thermal Sciences, 97, (2015) 152-162. https://doi.org/10.1016/j.ijthermalsci.2015.06.003.

      [26] A. M. Afonso, M. A. Alves. T. Pinho FT, Analytical solution of two-fluid electroosmotic flows of viscoelastic fluids, J. Colloid Interface Sci. 395, (2013), pp.277–286. https://doi.org/10.1016/j.jcis.2012.12.013.

      [27] G. P. Zhao, Y. J. Jian, F. Q. Li, Streaming potential, and heat transfer of nanofluids in microchannels in the presence of the magnetic field, J. Magn. Magn. Mater. 407, (2016) 75–82. https://doi.org/10.1016/j.jmmm.2016.01.025.

      [28] Y. J. Jian, Transient MHD heat transfer and entropy generation in a micro parallel channel combined with pressure and electroosmotic effects, Int. J. Heat Mass. Transf. 89 (2015 193–205. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.045.

      [29] R. Chakraborty, R. Dey, S.Chakraborty, Thermal characteristics of electromagnetohydrodynamic flows in a narrow channel with viscous dissipation and Joule heating under constant wall heat flux, Int. J. Heat Mass. Transf. 67, (2013) 1151–1162. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.099.

      [30] R F. Probstein, Physicochemical Hydrodynamics (New York: Wiley) (1994). https://doi.org/10.1002/0471725137.


 

HTML

View

Download

Article ID: 30911
 
DOI: 10.14419/ijet.v9i3.30911




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.