Physical, Mechanical and Acoustic Characteristics of Anogeissus leiocarpus, Manilkara multinervis and Cylicodiscus gabunen-sis Woods Marketed in Benin in West Africa

  • Authors

    • Montcho Crépin Hounlonon Université d'Abomey-Calavi
    • Adéyèmi Clément Kouchadé Université d'Abomey-Calavi
    • Alexis Enagnon MEDEHOUENOU Université d'Abomey-Calavi
    • Vincent GOHOUNGO Université d'Abomey-Calavi
    • Aristide Comlan HOUNGAN UNSTIM-Abomey
    • Basile Bruno KOUNOUHEWA Université d'Abomey-Calavi
    — Updated on 2022-11-24
    https://doi.org/10.14419/ijet.v11i2.32049
  • Abstract

    Wood is a material used in construction, in instrument making, etc. In Benin, for heavy construction and construction on wetland, species with high technological characteristics are imported. But the performance of these imported species compared to local indigenous or exotic species remains to be verified. Thus, it is necessary to determine the basic technological properties of these species. It is within this framework that we have, on 500mm×20mm×20mm prismatic wood specimens of Anogeissus leiocarpus, Manilkara multinervis and Cylicodiscus gabunensis, used the acoustic method BING (Beam Identification by Non-destructive Grading) of CIRAD-Forest to determine the density Ï, the moduli of Young's modulus E, shear modulus G and the internal friction tan𛿠and then evaluated the modulus of specific stiffness E/Ï. On other 20 mm edge cubic specimens, we evaluated the reference physical properties of density, infradensity, total shrinkage, radial shrinkage, tangential shrinkage and shrinkage anisotropy. It appears that the wood of Anogeissus leiocarpus and Manilkara multinervis present better physico-mechanical characteristics than those of Cylicodiscus gabunensis. Anogeissus leiocarpus and Manilkara multinervis are very dense woods with physico-mechanical characteristics better than those of most Benin's popular species. The average modulus of elasticity in bending of these two species is higher than 12000 MPa while that of Cylicodiscus gabunensis is 10713 MPa. In compression all these species have an average modulus of elasticity above 14100 MPa.  Cylicodiscus gabunensis wood tested is light with a lower shrinkage anisotropy than the other two species studied and have excellent acoustic properties. Its average specific stiffness (14 GPa) is higher than that of the other two species studied (12 GPa). The good physical-mechanical and acoustic properties of these species show that they are good structural timbers with also good potential for instrument making and acoustic insulation.

    Keywords: BING; Construction; Infradensity; Modulus of elasticity; Shrinkage anisotropy; Timber.

  • References

    1. [1] DGEFC (2019), Compilation of the statistical yearbooks and annual reports of the Direction Générale des Eaux, Forêts et Chasses (ex Direction Générale des Forêts et des Ressources Naturelles DGFRN).

      [2] Akoègninou A, Van der Burg WJ & Van der Maesen LJG (2006), Analytical Flora of Benin. Cotonou and Wageningen: Backuys Publishers.

      [3] Natta AK, Sinsin B & van der Maesen LJG (2002), Riparian forests, a unique but endangered ecosystem in Benin. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 124, 55-69. https://doi.org/10.1127/0006-8152/2002/0124-0055

      [4] Ayarkwa J (1998), New marketable Ghanaian timber species for furniture and construction. Wood News. Available on https://fornis.net, last visit: 12.04.2022.

      [5] Ayarkwa J & Owusu FW (2008), Cylicodiscus gabunensis Harms. In: Louppe D., Oteng-Amoako A.A. & Brink M., eds. Prota 7(1): timbers/bois d'oeuvre 1. Wageningen, The Netherlands: Prota.

      [6] Gérard J, Paradis S, Guibal D, Vernay M, Beauchêne J, Brancheriau L, Chalon I, Daigremont C, Détienne P, Fouquet D, Langbour P, Lotte S, Méjean C, Thévenon M-F & Thibaut A (2011). Tropix 7: The main technological characteristics of 245 tropical and temperate forest species. CIRAD, Montpellier, France.

      [7] Owusu FW, Ayarkwa J & Frimpong-Mensah K (2012), Sanding properties of seven lesser-used timber species in Ghana. Ghana J. Forestry, 28, 1-14.

      [8] Owusu FW, Boakye F & Zorve G (2015), Timber species from Afram arm of the Volta Lake in Ghana: Planning and sanding properties. Journal of Horticulture and Forestry, 7, 84-93. DOI: 10.5897/JHF2014.0383.

      [9] Hidayat W, Jang J-H, Park SH, Febrianto F & Kim N-H (2015), Properties of Okan (Cylicodiscus gabunensis) Wood Thermally Modified at Different Temperatures, Conference Proceedings, B-07, 38-39 Available on https://papersearch.net/thesis/article.asp?key=3315512 and www.academia.edu, Last visit : 13.04.2022

      [10] Brancheriau L (2002), Mechanical expertise of sawn timber by vibration analysis in the acoustic domain. PhD Thesis, Ecole supérieure de mécanique de Marseille, France.

      [11] Ahmed SA & Adamopoulos S (2018), Acoustic properties of modified wood under different humid conditions and their relevance for musical instruments. Applied Acoustics 140, 92 - 99. https://doi.org/10.1016/j.apacoust.2018.05.017

      [12] Hounlonon MC, Kouchadé AC & Kounouhéwa BB (2021), Physical and Mechanical Properties of Acacia Auriculiformis A. Cunningham Ex Benth Used As Timber in Benin. Journal of Materials Science and Surface Engineering, 8, 992 - 1000. DOI: https://doi.org/10.52687/2348-8956/815

      [13] Hounlonon MC, Kouchadé AC, Mèdéhouénou A, Gohoungo V and Kounouhéwa BB (2022), Physico-Mechanical and Acoustic Characterization of Mimusops andongensis Wood from Benin in West Africa, American-Eurasian J. Agric. & Environ. Sci., 22, 79-88. DOI: 10.5829/idosi.aejaes.2022.79.88

      [14] Memento du Forestier (1981), Second revised and expanded edition, Paris, France. 894.

      [15] Gerard J, Kouassi AC, Daigremont C, Detienne P, Fouquet D & Vernay M (1998), Synthesis on the technological reference characteristics of the main African commercial woods. CIRAD-forêt campus international de Baillarguet, Montpellier (France), 189.

      [16] Tonouéwa M, Gbémavo C, Ouinsavi C & Sokpon N (2013), Influence of climatic factors on the technological characteristics of the main timber and service woods in North-Benin. Annals of the University of Parakou, Series "Natural Sciences and Agronomy", 2, 1 - 8.

      [17] Tonouéwa JFMF, Langbour P, Biaou SSH, Assèdé EPS, Guibal D, Kouchadé AC & Kounouhéwa BB (2020), Anatomical and physico-mechanical properties of Acacia auriculiformis wood in relation to age and soil in Benin, West Africa. European Journal of wood and wood products, 78, 745 - 756. DOI: 10.1007/s00107-020-01540-x.

      [18] Hounlonon MC, Kouchadé AC & Kounouhéwa BB (2017), Physical and mechanical properties of teak wood of Tanzanian and local provenance in Benin. Bois et Forêts des Tropiques, 331, 45 - 53.

      [19] Sproßmann R, Zauer M & Wagenführ A (2017), Characterization of acoustic and mechanical properties of common tropical woods used in classical guitars. Results Phys 7, 1737 - 1742.

      [20] Longui EL, Yojo T, Lombardi DR & Alves ES (2010), The Potential of Ipê (Handroanthus spp.) and Maçaranduba (Manilkara spp.) Woods in the manufacture of bows for string instruments. IAWA J 31,149 - 160.

      [21] Ekhuemelo DO, Tembe ET & Aondoaver MT (2021), Assessment of physical and mechanical properties of three hardwood species from timber sheds in Makurdi, Benue state, Nigeria. Proceedings of the 7th Biennial Conference of Forests and Forest Products Society, Held At University of Uyo, Uyo, Nigeria. 26th - 30th April, 2021.

      [22] Elzaki OT, Habib MEA & Khider OT (2020), Physical and Mechanical Properties of Anogeisus leiocarpa (CD) and Commiphora africana (A. Rich) as Potential Timber Trees for North Darfur State (Sudan). World Engineering & Applied Sciences Journal, 11, 21-25. DOI: 10.5829/idosi.weasj.2020.21.25

      [23] Bello AA & Jimoh AA (2018), Some Physical and Mechanical Properties of African Birch (Anogeissus Leiocarpus) Timber. J. Appl. Sci. Environ. Manage. 22, 79 - 84. DOI: https://dx.doi.org/10.4314/jasem.v22i1.14

      [24] Bultman JD, Beal RH, Ampong FFK (1979), Natural resistance of some tropical African woods to Coptotermes formosanus Shiraki. Forest Products Journal. 29, 46-50.

      [25] Tsunoda K (1990), The Natural Resistance of Tropical Woods against Biodeterioration, Wood research : bulletin of the Wood Research Institute Kyoto University, 77 18-27

      [26] Christoforo AL, Panzera TH, Silva DAL, Fiorelli J & Lahr FAR (2014), Shear and Longitudinal Modulus of Elasticity in Structural Lumber Beams, International Journal of Materials Engineering 4, 31 - 36 DOI: 10.5923/j.ijme.20140401.04.

      [27] Richter HG & Dallwitz MJ (2000), 2000 onwards. Commercial timbers: descriptions, illustrations, identification, and information retrieval. In English, French, German, Portuguese, and Spanish. Version: 9th April 2019. deltaintkey.com', last visit: 12.04.2022

      [28] Ribeiro RFdS, Feiteira JFS, de Gouvêa JP & Ferreira AF (2021), Experimental investigation on variability in properties of Amazonian wood species Muiracatiara (Astronium lecointei) and Maçaranduba (Manilkara huberi) focusing guitar fingerboards manufacturing. Journal of Bioresources and Bioproducts 6, 33 - 38. https://doi.org/10.1016/j.jobab.2021.02.006

      [29] Hédin L (1929), Note on Adoum wood (Cylicodiscus gabunensis Harms). J. Agric. Traditionnelle Bot. Appl., 95, 446-448.

      [30] Keller R & Millier C (1970), Use of density components in xylochronology. Ann. Sci. Forest. 27, 157 - 196.

  • Downloads

  • How to Cite

    Hounlonon , M. C. ., Kouchadé , A. C. ., MEDEHOUENOU, A. E., GOHOUNGO, V., HOUNGAN, A. C., & KOUNOUHEWA, B. B. (2022). Physical, Mechanical and Acoustic Characteristics of Anogeissus leiocarpus, Manilkara multinervis and Cylicodiscus gabunen-sis Woods Marketed in Benin in West Africa. International Journal of Engineering & Technology, 11(2), 103-107. https://doi.org/10.14419/ijet.v11i2.32049

    Received date: 2022-04-15

    Accepted date: 2022-05-16

    Published date: 2022-11-24