Mathematical modeling transfers during convective drying of papaya (carica papaya l.) considering the boundary conditions at the leading and trailing edges

  • Authors

    • Fouakeu-nanfack Gildas Armel
    • Tetang Fokone Abraham
    • Ekani Roger Yannick
    • Tientcheu Nsiewe Maxwell
    • Edoun Marcel
    • Kuitche Alexis
    • Ze-ghmati Belkacem
    2024-02-05
    https://doi.org/10.14419/484ynh57
  • Abstract

    In this study, convective heat and mass transfer during papaya drying in a parallel airflow were simulated. The aim of this work was to con-sider the boundary conditions at the leading and trailing edges in the coupled and simultaneous resolution of the heat and mass transfer equations to better predict papaya drying kinetics. The Luikov equations established for this transfer model were discretized by the implicit finite-difference method and then solved simultaneously using the MATLAB 2014 tool. The drying process was simulated under the influ-ence of drying air conditions and product thickness. The results showed that for the moisture ratio, the mean relative errors were 5.21% and 3.89% for the model without and with boundary conditions set at the leading and trailing edges, respectively. Similarly, the results showed that for product temperature, the mean relative errors were 4.35% and 3.61% for the model without and with boundary conditions set at the leading and trailing edges, respectively. Comparison of the predicted models with the experimental data satisfactorily demonstrated that in-corporating the leading and trailing edge boundary conditions in a transfer model enabled better prediction of drying kinetics than the model without the leading and trailing edge boundary conditions.

  • References

    1. F. Akter, R. Muhury, A. Sultana, et U. K. Deb, « A Comprehensive Review of Mathematical Modeling for Drying Processes of Fruits and Vegetables », International Journal of Food Science, vol. 2022, p. 1‑10, 2022, https://doi.org/10.1155/2022/6195257.
    2. A. M. Castro, E. Y. Mayorga, et F. L. Moreno, « Mathematical modelling of convective drying of fruits: A review », Journal of Food Engineering, vol. 223, p. 152‑167, 2018, https://doi.org/10.1016/j.jfoodeng.2017.12.012.
    3. O. Prakash et A. Kumar, Solar Drying Technology: Concept, Design, Testing, Modeling, Economics, and Environment. Springer, 2017. https://doi.org/10.1007/978-981-10-3833-4.
    4. A. O. Omolola, A. I. Jideani, et P. F. Kapila, « Quality properties of fruits as affected by drying operation », Critical reviews in food science and nutrition, vol. 57, no 1, p. 95‑108, 2017, https://doi.org/10.1080/10408398.2013.859563.
    5. D. A. Tzempelikos, D. Mitrakos, A. P. Vouros, A. V. Bardakas, A. E. Filios, et D. P. Margaris, « Numerical modeling of heat and mass transfer during convective drying of cylindrical quince slices », Journal of Food Engineering, vol. 156, p. 10‑21, 2015, https://doi.org/10.1016/j.jfoodeng.2015.01.017.
    6. N. G. A. Fouakeu, F. A. Tetang, M. Edoun, A. Kuitche, et B. Zeghmati, « A contribution to a numerical characterization of the thermal transfers in a saw tooth solar collector », International Journal of Thermal Technologies, vol. 9, no 3, p. 200‑206, 2019.
    7. A. M. Castro, L. E. Díaz, M. X. Quintanilla-Carvajal, E. Y. Mayorga, et F. L. Moreno, « Convective drying of feijoa (Acca sel-lowiana Berg): A study on bioactivity, quality, and drying parameters », LWT, vol. 186, p. 115209, 2023, https://doi.org/10.1016/j.lwt.2023.115209.
    8. A. Stegou-Sagia et D. Fragkou, « Influence of drying conditions and mathematical models on the drying curves and the moisture diffu-sivity of mushrooms », Journal of Thermal Engineering, vol. 1, no 4, p. 235‑244, 2015, https://doi.org/10.18186/jte.65158.
    9. J. A. K. M. Fernando et A. D. U. S. Amarasinghe, « Drying kinetics and mathematical modeling of hot air drying of coconut coir pith », SpringerPlus, vol. 5, no 1, p. 807, juin 2016, https://doi.org/10.1186/s40064-016-2387-y.
    10. A. S.-S. Stegou–Sagia et A. Fragkou, « Thin layer drying modeling of apples and apricots in a solar-assisted drying system », Journal of Thermal Engineering, vol. 4, no 1, p. 1680‑1691, 2018, https://doi.org/10.18186/journal-of-thermal-engineering.364909.
    11. O. Badaoui, S. Hanini, A. Djebli, B. Haddad, et A. Benhamou, « Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models », Renewable energy, vol. 133, p. 144‑155, 2019, https://doi.org/10.1016/j.renene.2018.10.020.
    12. F. A. Tetang, E. Marcel, et K. Alexis, « Intermittent Drying of Mango Slices (Mangifera indica L.)" Amelie": A New Model », American Journal of Food Science and Technology, vol. 8, no 3, p. 81‑86, 2020.
    13. A. Tom, D. Bruneau, et N. Djongyang, « Drying kinetics of beef meat: Modeling by the isenthalpe mass flux method », J Food Process Eng, vol. 44, no 4, avr. 2021, https://doi.org/10.1111/jfpe.13647.
    14. S. Keskes, S. Hanini, M. Hentabli, et M. Laidi, « Artificial Intelligence and Mathematical Modelling of the Drying Kinetics of Pharma-ceutical Powders. », Kemija u Industriji, vol. 69, 2020, https://doi.org/10.15255/KUI.2019.038.
    15. A. Kushwah, G. Mk, A. Kumar, et P. Singh, « Application of ANN and prediction of drying behavior of mushroom drying in side hy-brid greenhouse solar dryer: An experimental validation », Journal of Thermal Engineering, vol. 8, no 2, p. 221‑234, 2021, https://doi.org/10.18186/thermal.1086189.
    16. G. A. Fouakeu-nanfack, G. T. N. Wilfred, M. Balbine, E. Marcel, et Z. Belkacem, « Experimental characterization of convective drying of papaya (Carica papaya L.) to licking airflow », International Journal of Current Engineering and Technology, 2023.
    17. J. Wang et al., « Study on Cut Tobacco Drying Process Based on HS-GC/MS: Principal Component Analysis, Similarity Analy-sis, Dry-ing Conditions, and Drying Mechanism », Journal of Chemistry, vol. 2023, p. 1‑7, 2023, https://doi.org/10.1155/2023/5772916.
    18. A. O. Oladejo et al., « Influence of ultrasound-pretreated convective drying of Roselle (Hibiscus sabdariffa L) leaves on its dry-ing ki-netics and nutritional quality », Scientific African, vol. 20, p. e01704, juill. 2023, https://doi.org/10.1016/j.sciaf.2023.e01704.
    19. K. G. Erko, A. H. Taye, et W. C. Hofacker, « Numerical Modeling of Coupled Heat and Mass Transfer with Moving Boundary during Convective Drying Of Potato Slices », International Journal of Scientific & Engineering Research, vol. 8, no 11, p. 71‑78, 2017.
    20. H. Ambarita et A. H. Nasution, « A numerical solution to simultaneous heat and mass transfer of convective drying of food », J. Phys.: Conf. Ser., vol. 1116, no 3, p. 032002, déc. 2018, https://doi.org/10.1088/1742-6596/1116/3/032002.
    21. V. Chasiotis, D. Tzempelikos, D. Mitrakos, et A. Filios, « Numerical and experimental analysis of heat and moisture transfer of La-vandula x allardii leaves during non-isothermal convective drying », Journal of Food Engineering, vol. 311, p. 110708, 2021, https://doi.org/10.1016/j.jfoodeng.2021.110708.
    22. M. Y. Nasri et A. Belhamri, « A Semi-Empirical Approach for Predicting the Effects of Shrinkage on the Convective Mass Transfer Evolution During the Solar Drying of Foodstuffs. », International Journal of Heat & Technology, vol. 41, no 2, p. 439‑446, 2023, https://doi.org/10.18280/ijht.410219.
    23. W. P. Da-Silva, C. M. e Silva, et J. P. Gomes, « Drying description of cylindrical pieces of bananas in different temperatures using dif-fusion models », Journal of Food Engineering, vol. 117, no 3, p. 417‑424, 2013, https://doi.org/10.1016/j.jfoodeng.2013.03.030.
    24. J. A. Esfahani, H. Majdi, et E. Barati, « Analytical two-dimensional analysis of the transport phenomena occurring during con-vective drying: apple slices », Journal of Food Engineering, vol. 123, p. 87‑93, 2014, https://doi.org/10.1016/j.jfoodeng.2013.09.019.
    25. N. Shahari, H. A. Hasnan, A. Y. Hanan, et N. N. Ishak, « Analysis of two-dimensional (2d) fruit drying process through heat and mass transfer model », in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, p. 012024. https://doi.org/10.1088/1757-899X/477/1/012024.
    26. B. Matuam, N. Gnepie, J. Fotsa, A. Tetang, M. Edoun, et E. Alexis Kuitche, « Numerical Simulation of Heat and Moisture Transfer in Corrugated Walls Dryer », AE, vol. 7, no 1, p. 1‑10, 2023, https://doi.org/10.11648/j.ae.20230701.11.
    27. L. Lagunez-Rivera, I. I. Ruiz-López, M. A. García-Alvarado, et M. A. Salgado-Cervantes, « Mathematical simulation of the ef-fective diffusivity of water during drying of papaya », Drying Technology, vol. 25, no 10, p. 1633‑1638, 2007, https://doi.org/10.1080/07373930701590772.
    28. B. Mocelin et al., « Mathematical modeling of thin layer drying of papaya seeds in a tunnel dryer using particle swarm optimiza-tion method », Particulate Science and Technology, vol. 32, no 2, p. 123‑130, 2014, https://doi.org/10.1080/02726351.2013.839015.
    29. M. Torki-Harchegani, D. Ghanbarian, et M. Sadeghi, « Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods », Heat and mass transfer, vol. 51, no 8, p. 1121‑1129, 2015, https://doi.org/10.1007/s00231-014-1483-1.
    30. G. L. Dotto, L. Meili, E. H. Tanabe, D. P. Chielle, et M. F. P. Moreira, « Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models », Heat and Mass Transfer, vol. 54, no 2, p. 463‑471, 2018, https://doi.org/10.1007/s00231-017-2128-y.
    31. R. Muhury, F. Akter, et U. K. Deb, « Simulation of the Heat and Mass Transfer Occurring During Convective Drying of Mango Slices », in Intelligent Computing & Optimization: Proceedings of the 4th International Conference on Intelligent Computing and Optimi-zation 2021 (ICO2021) 3, Springer, 2022, p. 751‑761. https://doi.org/10.1007/978-3-030-93247-3_72.
    32. P. Chen et al., « A Heat and Mass Transfer Model of Peanut Convective Drying Based on a Two-Component Structure », Foods, vol. 12, no 9, Art. no 9, janv. 2023, https://doi.org/10.3390/foods12091823.
    33. A. S. Souza, T. C. Souza Pinto, A. M. Sarkis, T. F. D. Pádua, et R. Béttega, « Convective drying of iron ore fines: A CFD model validat-ed for different air temperatures and air velocities », Drying Technology, p. 1‑16, août 2023, https://doi.org/10.1080/07373937.2023.2252050.
    34. L. Villa-Corrales, J. J. Flores-Prieto, J. P. Xamán-Villaseñor, et E. García-Hernández, « Numerical and experimental analysis of heat and moisture transfer during drying of Ataulfo mango », Journal of food engineering, vol. 98, no 2, p. 198‑206, 2010, https://doi.org/10.1016/j.jfoodeng.2009.12.026.
    35. G. Takamte, M. Edoun, L. Monkam, A. Kuitche, et R. Kamga, « Numerical Simulation of Convective Drying of Mangoes (man-gifera Indica L.) Under Variable Thermal Conditions », International Journal of Thermal Technologies, vol. 3, no 2, p. 48‑52, 2013.
    36. T. J. Afolabi et S. E. Agarry, « Mathematical modeling and simulation of the mass and heat transfer of batch convective air drying of tropical fruits », Chem. Process Eng. Res, vol. 23, no 1, 2014.
    37. X.-L. Yu et al., « Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cu-bes », International Journal of Heat and Mass Transfer, vol. 149, p. 119231, mars 2020, https://doi.org/10.1016/j.ijheatmasstransfer.2019.119231.
    38. G. A. Fouakeu-nanfack, S. Kewou, F. J. Ngouem, A. T. Fokone, M. Edoun, et B. Zeghmati, « Numerical and experimental char-acterization of internal heat and mass transfer during convective drying of papaya (Carica papaya L.) in a drying air stream », Interna-tional Journal of Energetica, vol. 8, no 2, p. 1‑10, déc. 2023, Consulté le: 9 janvier 2024. [En ligne]. Disponible sur: https://www.ijeca.info/index.php/IJECA/article/view/221.
    39. M. K. Kosheleva, S. P. Rudobashta, O. R. Dornyak, et V. M. Dmitriev, « Convective Drying of Flat Fibrous Materials », J Eng Phys Thermophy, vol. 96, no 4, p. 988‑993, juill. 2023, https://doi.org/10.1007/s10891-023-02761-6.
    40. F. J. Ngouem, M. Edoun, L. Monkam, et A. Tetang, « Simulation of Convective Drying with Shrinkage using the Finite Window Method: Application and Validation », American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), vol. 78, no 1, p. 39‑49, 2021.
    41. I. Doymaz et A. S. Kipcak, « Effect of pre-treatment and air temperature on drying time of cherry tomato », Journal of Thermal Engi-neering, vol. 4, no 1, p. 1648‑1655, 2018. https://doi.org/10.18186/journal-of-thermal-engineering.364489.
    42. S. Nansereko, J. Muyonga, et Y. B. Byaruhanga, « Influence of Drying Methods on Jackfruit Drying Behavior and Dried Prod-ucts Physical Characteristics », International Journal of Food Science, vol. 2022, p. e8432478, sept. 2022, https://doi.org/10.1155/2022/8432478.
    43. R. Golestani, A. Raisi, et A. Aroujalian, « Mathematical modeling on air drying of apples considering shrinkage and variable diffusion coefficient », Drying Technology, vol. 31, no 1, p. 40‑51, 2013, https://doi.org/10.1080/07373937.2012.714826.
    44. S. B. Mabrouk, B. Khiari, et M. Sassi, « Modelling of heat and mass transfer in a tunnel dryer », Applied thermal engineering, vol. 26, no 17‑18, p. 2110‑2118, 2006, https://doi.org/10.1016/j.applthermaleng.2006.04.007.
    45. R. A. Lemus-Mondaca, C. E. Zambra, A. Vega-Gálvez, et N. O. Moraga, « Coupled 3D heat and mass transfer model for numer-ical analysis of drying process in papaya slices », Journal of Food Engineering, vol. 116, no 1, p. 109‑117, mai 2013, https://doi.org/10.1016/j.jfoodeng.2012.10.050.
    46. J. A. Pandith, « Induction heating assisted foam mat drying of papaya pulp: drying kinetics, drying modeling, and effects on qual-ity attributes », Agricultural Engineering International: CIGR Journal, vol. 20, no 2, p. 206‑215, 2018.
    47. H. Tavakolipour, « Drying kinetics of pistachio nuts (Pistacia vera L.) », World Applied Sciences Journal, vol. 12, no 9, p. 1639‑1646, 2011.
  • Downloads

  • How to Cite

    Gildas Armel , F.- nanfack, Fokone Abraham , T., Roger Yannick , E., Nsiewe Maxwell , T., Marcel , E., Alexis , K., & Belkacem, Z.- ghmati. (2024). Mathematical modeling transfers during convective drying of papaya (carica papaya l.) considering the boundary conditions at the leading and trailing edges. International Journal of Engineering & Technology, 13(1), 76-86. https://doi.org/10.14419/484ynh57