# Numerical characterization of solar radiation applied to a simplified five parameters diode model of a photovoltaic module in the city of Ngaoundere

• ## Authors

• Fouakeu-nanfack Gildas Armel Laboratory of Energetics and Applied Thermal, ENSAI-University of Ngaoundéré, Cameroon
• Bikai Jacques University of Ngaoundere, Cameroon
• Ngouem Felix Junior University Institute of Technology (IUT), University of Ngaoundere, Cameroon
• Ndjiya Ngasop University of Ngaoundere, Cameroon
• Marcel Edoun
• Edoun Marcel University of Ngaoundere, Cameroon
2024-04-24
• Numerical Characterization; Solar Radiation; Photovoltaic Module; Performance.
• In this paper, another simple and accurate approach to reconstructing the characteristics of a photovoltaic (PV) array exposed to solar radia-tion has been presented. This approach uses a five-parameter diode model. The approach is based exclusively on the manufacturer's data (three-point method: short-circuit current, open-circuit voltage, maximum power point). To carry out this work, we first carried out a numer-ical characterization of local solar radiation in the city of Ngaoundere. We then established the mathematical equations describing a solar photovoltaic module, and ran a numerical simulation on Matlab Simulink under standard conditions. The electrical parameters of the photo-voltaic generator and its optimal electrical quantities (current, voltage and power) were analyzed as a function of meteorological variations (temperature, irradiance) and series resistance. The simulation results show that we can achieve a maximum solar irradiance of 1214.9W/m2 in the city of Ngaoundere at solar noon. It has been shown that increasing solar irradiance is one of the most productive factors in a PV module. It was also shown that increasing temperature and series resistance considerably reduces the performance of a solar photovoltaic module. This result has enabled us to confirm that these PV cells perform best in a cold, clear-sky environment.

• ## References

1. Azem, H., Klemo, M., 2019. Modeling and simulation of photovioltaic cell with matlab for different temperature and different solar radiation. Interdisciplinary Journal of Research and Development 6, 44–44. https://doi.org/10.56345/ijrdv6n204.
2. Badi, N., Khasim, S., Al-Ghamdi, S.A., Alatawi, A.S., Ignatiev, A., 2021. Accurate modeling and simulation of solar photovoltaic pan-els with simulink-MATLAB. J Comput Electron 20, 974–983. https://doi.org/10.1007/s10825-021-01656-0.
3. Bi, B.E.B., GBAHA, P., SAKO, M.K., KOFFI, M.P.E., 2017. Modélisation et simulation d’un panneau solaire photovoltaïque par utili-sation de la fonction W de Lambert et de Matlab-Simulink. Afrique SCIENCE 13, 18–28.
4. Boussaibo, A., Alphonse, S., Stephane, N.N., Goron, D., Duvalier, P.A., Kitmo, 2024. Modeling of a photovoltaic drip irrigation sys-tem for an offseason crop: case of onion cultivation in PITOA (North Cameroon). International Journal of Engineering & Technology 13, 1–12.
5. Cuce, P.M., Cuce, E., 2012. A novel model of photovoltaic modules for parameter estimation and thermodynamic assessment. Interna-tional Journal of Low-Carbon Technologies 7, 159–165. https://doi.org/10.1093/ijlct/ctr034.
6. Dongue, S.B., Njomo, D., Tamba, J.G., Ebengai, L., 2012. Modeling of electrical response of illuminated crystalline photovoltaic mod-ules using four-and five-parameter models. International Journal of Emerging Technology and Advanced Engineering 2, 612–619.
7. Essakhi, H., 2019. modélisation et simulation d’un module photovoltaïque. LASIME, ESTA Université Ibn Zohr, BP 33.
8. Fouakeu, N.G.A., Tetang, F.A., Edoun, M., Kuitche, A., Zeghmati, B., 2019. A contribution to a numerical characterization of the ther-mal transfers in a saw tooth solar collector. International Journal of Thermal Technologies 9, 200–206. https://doi.org/10.14741/ijtt/v.9.3.1
9. Ghani, F., Duke, M., 2011. Numerical determination of parasitic resistances of a solar cell using the Lambert W-function. Solar Energy 85, 2386–2394. https://doi.org/10.1016/j.solener.2011.07.001.
10. Ghani, F., Duke, M., Carson, J., 2013. Numerical calculation of series and shunt resistances and diode quality factor of a photovoltaic cell using the Lambert W-function. Solar Energy 91, 422–431. https://doi.org/10.1016/j.solener.2012.09.005.
11. Hysa, A., 2019. Modeling and simulation of the photovoltaic cells for different values of physical and environmental parameters. Emerging Science Journal 3, 395–406. https://doi.org/10.28991/esj-2019-01202.
12. Jannot, Y., 2003. Thermique solaire. p30-p70, October.
13. Kadeval, H.N., Patel, V.K., 2021. Mathematical modelling for solar cell, panel and array for photovoltaic system. Journal of Applied and Natural Science 13, 937–943. https://doi.org/10.31018/jans.v13i3.2529.
14. Kassmi, K., Hamdaoui, M., Olivié, F., 2007. Conception et modélisation d’un système photovoltaïque adapté par une commande MPPT ana-logique. Journal of Renewable Energies 10, 451–462. https://doi.org/10.54966/jreen.v10i4.749.
15. Khezzar, R., Zereg, M., Khezzar, A., 2010. Comparaison entre les différents modèles électriques et détermination des paramètres de la carac-téristique IV d’un module photovoltaïque. Journal of Renewable Energies 13, 379–388. https://doi.org/10.54966/jreen.v13i3.206.
16. Li, Y., Huang, W., Huang, H., Hewitt, C., Chen, Y., Fang, G., Carroll, D.L., 2013. Evaluation of methods to extract parameters from current–voltage characteristics of solar cells. Solar Energy 90, 51–57. https://doi.org/10.1016/j.solener.2012.12.005.
17. Ma, J., Man, K.L., Ting, T.O., Zhang, N., Guan, S.-U., Wong, P.W., 2013a. Approximate single-diode photovoltaic model for efficient I-V characteristics estimation. The Scientific World Journal 2013. https://doi.org/10.1155/2013/230471.
18. Ma, J., Ting, T.O., Man, K.L., Zhang, N., Guan, S.-U., Wong, P.W., 2013b. Parameter estimation of photovoltaic models via cuckoo search. Journal of applied mathematics 2013. https://doi.org/10.1155/2013/362619.
19. Orioli, A., Di Gangi, A., 2013. A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the ba-sis of the tabular performance data. Applied energy 102, 1160–1177. https://doi.org/10.1016/j.apenergy.2012.06.036.
20. Peng, L., Sun, Y., Meng, Z., 2014. An improved model and parameters extraction for photovoltaic cells using only three state points at stand-ard test condition. Journal of power Sources 248, 621–631. https://doi.org/10.1016/j.jpowsour.2013.07.058.
21. Peng, L., Sun, Y., Meng, Z., Wang, Y., Xu, Y., 2013. A new method for determining the characteristics of solar cells. Journal of power sources 227, 131–136. https://doi.org/10.1016/j.jpowsour.2012.07.061.
22. Robinson, N., Justus, S., Elijah, A., Nicodemus, O., 2020. A fast and accurate analytical method for parameter determination of a pho-tovolta-ic system based on manufacturer’s data. Journal of Renewable Energy 2020, 1–18. https://doi.org/10.1155/2020/7580279.
23. Satapathy, L.M., Harshita, A., Saif, M., Dalai, P.K., Jena, S., 2018. Comparative analysis of boost and buck-boost converter in photo-voltaic power system under varying irradiance using MPPT, in: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). IEEE, pp. 1828–1833. https://doi.org/10.1109/ICICCT.2018.8473222.
24. Tummuru, N.R., Mishra, M.K., Srinivas, S., 2015. Dynamic energy management of renewable grid integrated hybrid energy storage system. IEEE Transactions on Industrial Electronics 62, 7728–7737. https://doi.org/10.1109/TIE.2015.2455063.
25. Zhang, C., Zhang, Y., Su, J., Gu, T., Yang, M., 2020. Performance prediction of PV modules based on artificial neural network and ex-plicit analytical model. Journal of Renewable and Sustainable Energy 12. https://doi.org/10.1063/1.5131432.