Efficient design of a reversible 2-to-4 decoder in quantumdot cellular automata using Toffoli gates

  • Authors

    • Bahijja Yahaya Galadima Bayero University, Kano
    • Garba Shehu Musa Galadanci Department of Physics, Bayero University, Kano, Nigeria
    • Nura Muhammad Shehu Department of Physics, Bayero University, Kano, Nigeria
    2024-06-18
    https://doi.org/10.14419/xdn08307
  • Reversible Gate;Quantum-Dot Cellular Automata;QCA Designer Simulator;Toffoli Gate.
  • This research presents an optimized design of a 2-to-4 decoder in Quantum-dot Cellular Automata (QCA) using a new formula developed from the Reversible logic. The proposed QCA decoder architecture employs 112 cells and occupies an area of 0.13μm², achieving a significant reduction in size compared to previous designs. The circuit is designed using a single-layer approach, enhancing its efficiency and minimizing power dissipation. Simulation results using the QCA Designer simulator version 2.0.3 demonstrate the enhanced functionality of the suggested decoder in regard to functionality and also efficiency, making it a promising candidate for future nanoscale integrated circuit applications.

  • References

    1. S. Riki and F. S. Hassani, “Research Paper A Robust- Single Layer QCA Decoder Using a Novel Fault Tolerant Three Input Majority Gate,” Journal of Optoelectronical Nanostructures. vol. 7, no. 3, pp. 23–45, 2022.
    2. A. Abbasizadeh and M. Mosleh, “Ultradense 2-to-4 decoder in quantum-dot cellular automata technology based on MV32 gate,” ETRI Journal., vol. 42, no. 6, pp. 912–921, 2020, https://doi.org/10.4218/etrij.2019-0068.
    3. B. Y. Galadima, G. S. M. Galadanci, S. M. Gana, A. Tijjani, and M. Ibrahim, “QCA Based Design of Reversible Parity Generator and Parity Checker Circuits for Telecommunication,” NIPES Journal of Science and Technology Researchvol. 5, no. 2, pp. 331–343, 2023.
    4. N. A. Shah, F. A. Khanday, and J. Iqbal, “Quantum-dot Cellular Automata(QCA) Design of Multi-Function Reversible Logic Gate,” Commun. Inf. Sci. Manag. Eng., vol. 2, no. c, pp. 8–18, 2012.
    5. I. Gassoumi, L. Touil, B. Ouni, and A. Mtibaa, “An Ultra-Low Power Parity Generator Circuit Based on QCA Technology,” J. Electr. Comput. Eng., vol. 2019, 2019, https://doi.org/10.1155/2019/1675169.
    6. M. Kumar and T. N. Sasamal, “An Optimal design of 2-to-4 Decoder circuit in coplanar Quantum-dot cellular automata,” Energy Pro-cedia, vol. 117, pp. 450–457, 2017, https://doi.org/10.1016/j.egypro.2017.05.170.
    7. V. K. Sharma, “Optimal design for digital comparator using QCA nanotechnology with energy estimation,” Int. J. Numer. Model. Elec-tron. Networks, Devices Fields, vol. 34, no. 2, pp. 2–11, 2021, https://doi.org/10.1002/jnm.2822.
    8. B. S. Premananda, C. Skanda, and B. Srivatsa, “Area and Energy Efficient QCA based Decoder,” Proc. 6th Int. Conf. Commun. Elec-tron. Syst. ICCES 2021, pp. 117–122, 2021, https://doi.org/10.1109/ICCES51350.2021.9489011.
    9. K. Kalpana, K. Sivakami, N. Revathi, S. M. Deepa, and V. V. Teresa, “Efficient Nano-Scale Design of TIEO Based Reversible Logic Toffoli Gate Priority Encoder in Quantum-Dot Cellular Automata,” E3S Web Conf., vol. 472, 2024, https://doi.org/10.1051/e3sconf/202447203014.
    10. V. Ajay Kumar, K. Valli Madhavi, P. Siva Prasad, and I. L. Prasad, “Relative and analytical review of quantum dot cellular automata method based on 2:4 decoder circuits,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 7, no. 6, pp. 140–143, 2018, https://doi.org/10.30534/ijatcse/2018/15762018.
    11. R. Laajimi, “Nanoarchitecture of Quantum-Dot Cellular Automata (QCA) Using Small Area for Digital Circuits,” Adv. Electron. Circuits - Princ. Archit. Appl. Emerg. Technol., 2018, https://doi.org/10.5772/intechopen.72691.
    12. Rolf Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. Dev., no. July, pp. 183–191, 1961.https://doi.org/10.1147/rd.53.0183.
    13. M. Norouzi, S. R. Heikalabad, and F. Salimzadeh, “A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology,” Int. J. Circuit Theory Appl., vol. 48, no. 8, pp. 1291–1303, 2020, https://doi.org/10.1002/cta.2799.
    14. G. Kalita, “Design of Reversible Decoder with minimum Garbage Output,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, pp. 3463–3470, 2020, https://doi.org/10.30534/ijatcse/2020/150932020.
    15. V. Shukla, O. P. Singh, G. R. Mishra, and R. K. Tiwari, “Reversible Realization of N-bit Arithmetic Circuit for Low Power Loss ALU Applications,” Procedia Comput. Sci., vol. 125, pp. 847–854, 2018, https://doi.org/10.1016/j.procs.2017.12.108.
    16. S. S. Ahmadpour, M. Mosleh, and M. A. Asadi, “The Development of an Efficient 2-to-4 Decoder in Quantum-Dot Cellular Automata,” Iran. J. Sci. Technol. - Trans. Electr. Eng., vol. 45, no. 2, pp. 391–405, 2021, https://doi.org/10.1007/s40998-020-00375-9.
    17. A. K. Saha, K. Sambyo, and C. T. Bhunia, “ Design and Analysis of n :2nReversible Decoder ,” IETE J. Educ., vol. 57, no. 2, pp. 65–72, 2016, https://doi.org/10.1080/09747338.2016.1162672.
    18. N. Abdessaied and R. Drechsler, Reversible and Quantum Circuits. 2016. https://doi.org/10.1007/978-3-319-31937-7.
    19. D. M. Miller, R. Wille, and G. W. Dueck, “Synthesizing reversible circuits for irreversible functions,” 12th Euromicro Conf. Digit. Syst. Des. Archit. Methods Tools, DSD 2009, pp. 749–756, 2009, https://doi.org/10.1109/DSD.2009.186.
    20. M. Soeken, R. Wille, O. Keszocze, D. Michael Miller, and R. Drechsler, “Embedding of large boolean functions for reversible logic,” ACM J. Emerg. Technol. Comput. Syst., vol. 12, no. 4, 2015, https://doi.org/10.1145/2786982.
    21. P. Biswas, N. Gupta, and N. Patidar, “Basic Reversible Logic Gates and It’s Qca Implementation,” J. Eng. Res. Appl. www.ijera.com, vol. 4, no. 6, pp. 12–16, 2014, [Online]. Available: www.ijera.com
    22. U. Mehta and V. Dhare, “Quantum-dot cellular automata (QCA): A survey,” arXiv, no. November 2017.
    23. G. L. Snider et al., “Quantum-dot cellular automata: Review and recent experiments (invited),” J. Appl. Phys., vol. 85, no. 8 II A, pp. 4283–4285, 1999, https://doi.org/10.1063/1.370344.
    24. M. M. Abutaleb, “Robust and efficient QCA cell-based nanostructures of elementary reversible logic gates,” J. Supercomput., vol. 74, no. 11, pp. 6258–6274, 2018, https://doi.org/10.1007/s11227-018-2550-z.
  • Downloads

  • How to Cite

    Galadima, B. Y., Shehu Musa Galadanci, G. ., & Muhammad Shehu, N. . (2024). Efficient design of a reversible 2-to-4 decoder in quantumdot cellular automata using Toffoli gates. International Journal of Engineering & Technology, 13(2), 189-193. https://doi.org/10.14419/xdn08307