Dynamic monitoring of tropospheric ozone concentrations in northeast and Midwest Brazil: insights into seasonal variations and climatic influences

  • Authors

  • : OMI; TCO Concentration; Spatio-Temporal Distribution; Atmospheric Parameters; Ozone and Climate Relationship.
  • Rapid economic transformations, the urbanization process, and the intensification of industrialization have resulted in a notable increase in ozone (O3) emissions, particularly in the Northeast and Central-West regions of Brazil. To monitor the tropospheric ozone column (TCO) over these regions, the Aura Ozone Monitoring Instrument (OMI) was utilized for long-term, large-scale dynamic monitoring from 2008 to 2016. Seasonal variations in O3 concentration revealed that spring exhibited higher concentrations compared to winter. However, winter showed higher O3 concentrations than summer and autumn. Monthly variations displayed cyclical variability, with low values observed in April-June for Campo Grande and in October for Maceió, while high values were observed in October for Campo Grande and in May for Maceió. The spatio-temporal distribution of O3 concentration was influenced by natural and anthropogenic factors. TCO concentration showed positive correlations with temperature and wind. The monthly TCO demonstrated seasonal variation in both cities. Linear regression analysis indicated an increasing trend in TCO due to latitudinal variation between Maceió and Campo Grande during the study period.

  • References

    1. Aculinin, A. (2006). Variability of Total Column Ozone Content Measured at Chisinau Site, Republic of Moldova. Moldavian Journal of Physical Science, 5, 240-248.
    2. Akinyemi, M. L., & Oladiran, E. O. (2007). Temporal and spatial variability of ozone concentration over four African stations. Journal of Applied Sciences, 7(6), 913-917. https://doi.org/10.3923/jas.2007.913.917.
    3. Akinyemi, M. L. (2010). Total ozone as a stratospheric indicator of climate variability over West Africa. International Journal of the Physical Sciences, 5(5), 447-451.
    4. Allen, J. (2004). Tango in the atmosphere: ozone and climate change. NASA Earth Observatory.
    5. Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorol Z, 22(6), 711-728. https://doi.org/10.1127/0941-2948/2013/0507.
    6. Audu, M. O., Okeke, F. N., & Ejembi, E. (2021). Evaluation of Spatial Distribution and Seasonal Variations of Total Ozone Column and its Relationship with Atmospheric Parameters. International Journal of Innovative Science and Research Technology, 6(6).
    7. Eresanya, E. O., Oluleye, A., & Daramola, M. T. (2017). The Influence of Rainfall and Temperature on Total Column Ozone over West Africa. Advances in Research, 10(2), 1-11. https://doi.org/10.9734/AIR/2017/34312.
    8. Isikwue, B. C., & Okeke, F. N. (2009). Effects of some atmospheric parameters on the dynamics of lower stratospheric ozone in the low latitude. Pacific Journal of Science and Technology, 10(1), 686-692. https://doi.org/10.1063/1.3137822.
    9. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15, 259-263. https://doi.org/10.1127/0941-2948/2006/0130.
    10. Lyra, G. B., Oliveira-Junior, J. F., & Zeri, M. (2014). Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Alagoas state, Northeast of Brazil. International Journal of Climatology, 34, 3546-3558. https://doi.org/10.1002/joc.3926.
    11. McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer, C. G., Seftor, C. J., ... Cebula, R. P. (1998). Earth Probe Total Ozone Mapping Spectrometer (TOMS): Data Products User's Guide. NASA Technical Publication, 206895.
    12. Muñoz, L. E., Campozano, L. V., Guevara, D. C., Parra, R., Tonato, D., Suntaxi, A., ... Cordoba, J. (2023). Comparison of Radiosonde Measurements of Meteorological Variables with Drone, Satellite Products, and WRF Simulations in the Tropical Andes: The Case of Quito, Ecuador. Atmosphere, 14, 264. https://doi.org/10.3390/atmos14020264.
    13. Neale, R. E., Barnes, P. W., Robson, T. M., et al. (2021). Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2020. Photochem Photobiol Sci, 20, 1-67. https://doi.org/10.1007/s43630-020-00001-x.
    14. Obiekezie, T. N. (2008). Sunshine activity and total column Ozone variation in Lagos, Nigeria. Moldavian Journal of Physical Sciences, 8(2), 200-209.
    15. Rafiq, L., Tajbar, S., & Manzoor, S. (2017). Long-term temporal trends and spatial distribution of total Ozone over Pakistan. The Egyptian Journal of Remote Sensing and Space Sciences, 20(2017), 295-301. https://doi.org/10.1016/j.ejrs.2017.05.002.
    16. Sachithananthem, C. P., Thamizharasan, K., & SamuelSelvaraj, R. (2013). Variation of total Ozone concentration and rainfall by decomposition analysis. International Journal of Scientific and Engineering Research, 4(8), 1-12.
    17. Sivasakthivel, T., & Kumar, K. K. (2011). Ozone layer depletion and its effects. International Journal of Environmental Science and Development, 2(1), 30-37. https://doi.org/10.7763/IJESD.2011.V2.93.
    18. Song, C., Wu, L., Xie, Y., He, J., Chen, X., Wang, T., ... Liu, Y. (2017). Air pollution in China: Status and spatiotemporal variations. Environmental Pollution, 227, 334-347. https://doi.org/10.1016/j.envpol.2017.04.075.
    19. Souza, A., Aristone, F., Fernandes, W. A., Oliveira, A. P. G., Olaofe, Z., Abreu, M. C., ... Pobocikova, I. (2020). Analysis of Ozone Concentrations Using Probability Distributions. OZONE-SCIENCE & ENGINEERING, 42, 539-550. https://doi.org/10.1080/01919512.2020.1736987.
    20. Souza, A., de Oliveira-Junior, J. F., Abreu, M. C., Cavazzana, G. H. (2022). Spatial-Temporal Variability of the Ozone Column over the Brazilian Midwest from Satellite Data from 2005 to 2020. Water, Air, and Soil Pollution, 233, 59. https://doi.org/10.1007/s11270-022-05532-w.
    21. Souza, A., Ihaddadene, R., Ihaddadene, N., Oguntunde, P. (2019). Clarity index Analysis and modeling using probability distribution functions in Campo Grande-MS, Brazil. Journal of Solar Energy Engineering-Transactions of the ASME, 1, 1.
    22. Souza, A., Abreu, M. C., Oliveira-Junior, J. F., Aristone, F., Fernandes, W. A., Graf, R., Lins, T. M. P., & Kings, J. C. (2021). Nightly ozone concentrations at ground level in the Midwest of Brazil: NO and NO2 concentration assignments. European Chemical Bulletin, 10, 191-198.
    23. Sreenivasa, R. J. (2006). The effect of wind direction on ozone level: A case study. Environmental and Ecological Statistics, 13, 287-298. https://doi.org/10.1007/s10651-004-0012-7.
    24. Xu, J., He, Y. J., Li, M. Z., Zhang, Z. Z., Du, X. H., Wang, J. K., ... Chen, Y. Z. (2021). A high ozone event over Beijing after the May 2017 Belt and Road Forum. Atmospheric Pollution Research, 12, 287-297. https://doi.org/10.1016/j.apr.2020.12.019.
  • Downloads

  • How to Cite

    Souza, A. de, de Medeiros, E. S. ., Özonur, D. ., de Oliveira-Júnior, J. F. ., Abreu, M. C. ., Pobocikova, I. ., & Nune, R. S. C. . (2024). Dynamic monitoring of tropospheric ozone concentrations in northeast and Midwest Brazil: insights into seasonal variations and climatic influences. International Journal of Engineering & Technology, 13(2), 204-211. https://doi.org/10.14419/m28s9z69