Physical and mechanical characterization of aggregates in Burkina Faso: implications for use as endogenous knowledge in civil engineering

  • Authors

    • Abdoul Aziz Ouiminga Dr
    • Adélaïde Lareba Ouedraogo Laboratoire d’Energies Thermiques et Renouvelables (LETRE), Université Joseph Ki-Zerbo 03 BP 7021 Ouagadougou 03, Burkina Faso
    • Patrice Kouraogo Centre National de la Recherche Scientifique et Technologique (CNRST)-ISS, Ouagadougou 03, Burkina Faso
    • Mohamed Yerbanga 3 Centre National de la Recherche Scientifique et Technologique (CNRST)-ISS, Ouagadougou 03, Burkina Faso
    • Sié Kam Laboratoire d’Energies Thermiques et Renouvelables (LETRE), Université Joseph Ki-Zerbo 03 BP 7021 Ouagadougou 03, Burkina Faso
    2024-06-18
    https://doi.org/10.14419/amdvwz38
  • Characterization; Natural Sand; Crushed Aggregates; Concrete; Civil Engineering.
  • Abstract

    Aggregates are the world's most widely exploited resource, surpassing even fossil fuels. They are mainly used for concrete production. On the one hand, due to restrictions on the use of river sand in some parts of the world to conserve river beds, demand for alternative fine aggregates in the construction sector has increased considerably. The need to characterize and continuously update local and site-specific information on crushed aggregates and natural sand, in order to stimulate optimal use, is essential. As a contribution to strengthening the use of local aggregates in civil engineering, this study focuses on the characterization of aggregates. The various analyses enabled us to determine properties such as specific weight, grading class, flattening coefficient (only for crushed aggregates) and sand cleanliness (sand equivalent). Densities (apparent and absolute) meet the specifications of standard NF EN 12620, which stipulates an apparent density of between 1300 kg/m³ and 1600 kg/m³ and an absolute density of between 2500 kg/m³ and 2700 kg/m³. The results revealed a fineness modulus of 1.8. In view of this result, the sand complies with the requirements of standard NF P 18-541, which sets a fineness modulus of between 1.8 and 3.2, depending on the deposit, and requires an optimum modulus of 2.5. The (LA) results for 5/15 and 15/25 aggregates give values of 20.2% and 28.8% respectively. Analysis of the results shows that the aggregates studied are acceptable for concrete production.

  • References

    1. Lee, V. G., & Yeh, T. H. (2008). Sintering effects on the development of mechanical properties of fired clay ceramics. Materials Sci-ence and Engineering: A, 485(1-2), 5-13. https://doi.org/10.1016/j.msea.2007.07.068.
    2. Sri Ravindrarajah, R., & Tam, C. T. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of con-crete research, 37(130), 29-38. https://doi.org/10.1680/macr.1985.37.130.29.
    3. Dinha, H. L., Liu, J., Ong, D. E., & Doh, J. H. (2022). A sustainable solution to excessive river sand mining by utilizing by-products in concrete manufacturing: A state-of-the-art review. Cleaner Materials, 100140. https://doi.org/10.1016/j.clema.2022.100140.
    4. Katte, V. Y., Mfoyet, S. M., Manefouet, B., Wouatong, A. S. L., & Bezeng, L. A. (2019). Correlation of California bearing ratio (CBR) value with soil properties of road subgrade soil. Geotechnical and Geological Engineering, 37, 217-234. https://doi.org/10.1007/s10706-018-0604-x.
    5. Aboubakar, A., Manefouet, B. I., Komguep, L. S., Talom, E. T., Foueze, C. R., & Djonthu, Y. L. (2021). Geotechnical characterization of Beka-Gotto rock massif (Adamawa Region-Cameroon) for the use in civil engineering. Journal of Nepal Geological Society, 62, 47-57. https://doi.org/10.3126/jngs.v62i0.38693.
    6. Donza, H., Cabrera, O., & Irassar, E. F. (2002). High-strength concrete with different fine aggregate. Cement and Concrete research, 32(11), 1755-1761. https://doi.org/10.1016/S0008-8846(02)00860-8.
    7. Hasdemir, S., Tuğrul, A., & Yılmaz, M. (2016). The effect of natural sand composition on concrete strength. Construction and Building Materials, 112, 940-948. https://doi.org/10.1016/j.conbuildmat.2016.02.188.
    8. Mani, M., Bouali, M. F., Kriker, A., & Hima, A. (2021). Experimental characterization of a new sustainable sand concrete in an aggres-sive environment. Frattura ed Integrità Strutturale, 15(55), 50-64. https://doi.org/10.3221/IGF-ESIS.55.04.
    9. Moulay-Ali, A., Abdeldjalil, M., & Khelafi, H. (2021). An experimental study on the optimal compositions of ordinary concrete based on corrected dune sand—Case of granular range of 25 mm. Case Studies in Construction Materials, 14, e00521. https://doi.org/10.1016/j.cscm.2021.e00521.
    10. Nilsen, A. U., & Monteiro, P. J. (1993). Concrete: a three phase material. Cement and Concrete research, 23(1), 147-151. https://doi.org/10.1016/0008-8846(93)90145-Y.
    11. Rmili, A., Ouezdou, M. B., Added, M., & Ghorbel, E. (2009). Incorporation of crushed sands and Tunisian desert sands in the com-position of self compacting concretes Part II: SCC fresh and hardened states characteristics. International Journal of Concrete Struc-tures and Materials, 3(1), 11-14. https://doi.org/10.4334/IJCSM.2009.3.1.011.
    12. Seif, E. S. S. A. (2013). Assessing the engineering properties of concrete made with fine dune sands: an experimental study. Arabian Journal of Geosciences, 6, 857-863. https://doi.org/10.1007/s12517-011-0376-6.
    13. Bourmatte, N., & Houari, H. (2004). Granulats recyclés de substitution pour bétons hydrauliques (Doctoral dissertation, Université Frères Mentouri-Constantine 1).
    14. Vouffo, M., Tiomo, I. F., Fanmi, H. K., Djoumen, T. K., & Ngapgue, F. (2022). Physical and mechanical characterization of pyroclastic materials in Baleng area (Bafoussam, West-Cameroon): Implication for use in civil engineering. Case Studies in Construction Materials, 16, e00916. https://doi.org/10.1016/j.cscm.2022.e00916.
  • Downloads

  • How to Cite

    Ouiminga, A. A., Lareba Ouedraogo , A. ., Kouraogo , P. ., Yerbanga , M. ., & Kam , S. . (2024). Physical and mechanical characterization of aggregates in Burkina Faso: implications for use as endogenous knowledge in civil engineering. International Journal of Engineering & Technology, 13(2), 212-218. https://doi.org/10.14419/amdvwz38