Review on water evaporative cooling low-cost devices for tomato fruit preservation

  • Authors

    • Kenne Meli Viannie Ingrid Department of Renewable Energy, National Higher Polytechnic School - University of Maroua, Cameroon
    • Ftatsi Mbetmi Guy-de-patience Department of Renewable Energy, National Higher Polytechnic School - University of Maroua, Cameroon 2 Laboratory of Analyses, Simulations and Testing (LASE), University Institute of Technology - University of Ngaoundere, Cameroon
    • Maka Taga Cybèle Department of Process Engineering, National Higher School of Agro-Industrial Sciences - University of Ngaoundere, Cameroon
    • Jiokap Nono Yvette Department of Chemical Engineering and Environment, University Institute of Technology - University of Ngaoundere, Cameroon
    2024-07-26
    https://doi.org/10.14419/sv586682
  • Evaporative Cooling; Low-Cost Devices; Post-Harvest Losses; Preservation; Tomato.
  • In order to reduce post-harvest losses and ensure the availability of fresh tomatoes during the lean period to agro-industrial companies, farmers and those who market them, it is essential to find an inexpensive way to preserve them. Energy, environmental and economic issues lead us to seek solutions adapted to the context. Inexpensive means of conservation include water evaporative cooling systems. The aim of this article was to review the scientific, technical and legal aspects of existing evaporative preservation devices to ensure a continuous supply of this fruit. From our research and the field study, it appears that “pot-in-pot” technologies and evaporative cooling chambers (ECC) are deployed but still present several limitations, particularly in terms of storage time, adaptation to certain environments, device mass, mold growth; which justifies the fact that they are not yet adopted by many tomatoes’ farmers. Perspectives have been proposed to overcome the limitations of these devices.

  • References

    1. C. O. Ochida, A. U. Itodo, et P. A. Nwanganga, « A review on postharvest storage, processing and preservation of tomatoes (Lycoper-sicon esculentum Mill) », Asian Food Sci. J., vol. 6, no 2, p. 1‑10, 2019. https://doi.org/10.9734/AFSJ/2019/44518.
    2. T. Alam et G. Goyal, « Packaging and storage of tomato puree and paste », 2007.
    3. H.-L. Tan et al., « Tomato-based food products for prostate cancer prevention: what have we learned? », Cancer Metastasis Rev., vol. 29, no 3, p. 553‑568, 2010. https://doi.org/10.1007/s10555-010-9246-z.
    4. K. Jayathunge et al., « Development of a methodology for production of dehydrated tomato powder and study the acceptability of the product », J. Agric. Technol., vol. 8, no 2, p. 765‑773, 2012.
    5. M. A. Rojas-Graü, G. Oms-Oliu, R. Soliva-Fortuny, et O. Martín-Belloso, « The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: a review », Int. J. Food Sci. Technol., vol. 44, no 5, p. 875‑889, 2009. https://doi.org/10.1111/j.1365-2621.2009.01911.x.
    6. K. P. K. Riyanti, « Performance of The Lm 386 Sound Sensor in Detecting Fruit Maturity Based on Sound Frequency », JOSAR J. Stud. Acad. Res., vol. 3, no 1, p. 155‑162, 2018. https://doi.org/10.35457/josar.v1i01.629.
    7. Z. Lisiewska et W. Kmiecik, « Effect of storage period and temperature on the chemical composition and organoleptic quality of fro-zen tomato cubes », Food Chem., vol. 70, no 2, p. 167‑173, 2000. https://doi.org/10.1016/S0956-7135(99)00110-3.
    8. Z. Z. Ahmad, « Hardware Developments for Fruits and Vegetables Quality Determination », 2009.
    9. S. B. N. Pranav, T. K. Kumar, J. H. Prakash, S. Sharan, et M. Ganesan, « Freshness Estimator for Fruits and Vegetables Using MQ Sen-sors », in 2021 International Conference on Advances in Computing and Communications (ICACC), IEEE, 2021, p. 1‑6.
    10. D. P. Patel, S. K. Jain, S. S. Lakhawat, et N. Wadhawan, « A low-cost storage for horticulture commodities for enhancing farmer’s in-come: An overview on evaporative cooling », J. Food Process Eng., vol. 45, no 10, p. e14134, 2022. https://doi.org/10.1111/jfpe.14134.
    11. H. Li, J. Harvey, et Z. Ge, « Experimental investigation on evaporation rate for enhancing evaporative cooling effect of permeable pavement materials », Constr. Build. Mater., vol. 65, p. 367‑375, 2014. https://doi.org/10.1016/j.conbuildmat.2014.05.004.
    12. Y. Yang, G. Cui, et C. Q. Lan, « Developments in evaporative cooling and enhanced evaporative cooling-A review », Renew. Sustain. Energy Rev., vol. 113, p. 109230, 2019. https://doi.org/10.1016/j.rser.2019.06.037.
    13. V. Rezaee et A. Houshmand, « Feasibility study of Maisotsenko indirect evaporative air-cooling cycle in Iran », Geosci. Eng., vol. 61, no 2, p. 23, 2015. https://doi.org/10.1515/gse-2015-0015.
    14. X. Cui, C. Yang, W. Yan, X. Wang, Y. Liu, et L. Jin, « Climatic applicability of indirect evaporative cooling strategies for data centers in China », J. Build. Eng., vol. 83, p. 108431, 2024. https://doi.org/10.1016/j.jobe.2023.108431.
    15. F. Babarinsa, « A Jacketed Chamber Evaporative Cooler », in A Design presented to the Nigeria Stored product Research Institute In-house Review Meeting: Port-Harcourt, Nigeria, 2000.
    16. B. Porumb, P. Ungureşan, L. F. Tutunaru, A. Şerban, et M. Bălan, « A review of indirect evaporative cooling technology », Energy Pro-cedia, vol. 85, p. 461‑471, 2016. https://doi.org/10.1016/j.egypro.2015.12.228.
    17. M. C. N. Nunes, J. P. Emond, M. Rauth, S. Dea, et K. V. Chau, « Environmental conditions encountered during typical consumer retail display affect fruit and vegetable quality and waste », Postharvest Biol. Technol., vol. 51, no 2, p. 232‑241, 2009. https://doi.org/10.1016/j.postharvbio.2008.07.016.
    18. S. Jain, R. Verma, L. Murdia, H. Jain, et G. Sharma, « Optimization of process parameters for osmotic dehydration of papaya cubes », J. Food Sci. Technol., vol. 48, no 2, p. 211‑217, 2011. https://doi.org/10.1007/s13197-010-0161-7.
    19. P. B. Pathare, U. L. Opara, C. Vigneault, M. A. Delele, et F. A.-J. Al-Said, « Design of packaging vents for cooling fresh horticultural produce », Food Bioprocess Technol., vol. 5, no 6, p. 2031‑2045, 2012. https://doi.org/10.1007/s11947-012-0883-9.
    20. T. Brosnan et D.-W. Sun, « Precooling techniques and applications for horticultural products—a review », Int. J. Refrig., vol. 24, no 2, p. 154‑170, 2001. https://doi.org/10.1016/S0140-7007(00)00017-7.
    21. R. M. Barbosa et N. Mendes, « Combined simulation of central HVAC systems with a whole building hygrothermal model », Energy Build., vol. 40, no 3, p. 276‑288, 2008. https://doi.org/10.1016/j.enbuild.2007.02.022.
    22. J. Lv, B. Zhou, M. Zhu, W. Xi, et E. Hu, « Experimental Study on the Performance of a Dew-Point Evaporative Cooling System with a Nanoporous Membrane », Energies, vol. 15, no 7, p. 2592, 2022. https://doi.org/10.3390/en15072592.
    23. D. Prusky, « Reduction of the incidence of postharvest quality losses, and future prospects », Food Secur., vol. 3, no 4, p. 463‑474, 2011. https://doi.org/10.1007/s12571-011-0147-y.
    24. H. Getinet, T. Seyoum, et K. Woldetsadik, « The effect of cultivar, maturity stage and storage environment on quality of tomatoes », J. Food Eng., vol. 87, no 4, p. 467‑478, 2008. https://doi.org/10.1016/j.jfoodeng.2007.12.031.
    25. D. Metin, K. Cengiz, Y. Yilmaz, B. etinccedil; elik Ali, et P. Ouml; mer, « The effects of the air velocity on the performance of the pad evaporative cooling systems », Afr. J. Agric. Res., vol. 6, no 7, p. 1813‑1822, 2011.
    26. W. A. Olosunde, J. Igbeka, et T. O. Olurin, « Performance evaluation of absorbent materials in evaporative cooling system for the stor-age of fruits and vegetables », Int. J. Food Eng., vol. 5, no 3, 2009. https://doi.org/10.2202/1556-3758.1376.
    27. A. Kouchakzadeh et A. Brati, « The evaluation of bulk charcoal as greenhouse evaporative cooling pad », Agric. Eng. Int. CIGR J., vol. 15, no 2, p. 188‑193, 2013.
    28. N. Nobel, « Evaporative Cooling: Practical Action Technology, Challenging Poverty ». Bourton, UK. Retrieved online from www. prac-ticalaction. org.(Accessed on …, 2003.
    29. E. Verploegen, R. Ekka, et G. Gill, « Evaporative Cooling for Improved Fruit and Vegetable Storage in Rwanda and Burkina Faso », Copyrightcopyright Mass. Inst. Technol., 2019.
    30. O. Sanogo, T. Chagomoka, et E. Verploegen, « Evaporative cooling technologies for improved vegetable storage in Mali », MIT D-Lab, 2018.
    31. K. Chakraborty, J. Kabir, R. Dhua, et S. Ray, « Storage behavior of pointed gourd under zero energy cool chambers », Hortic. J., vol. 4, p. 43‑47, 1991.
    32. S. Pal, R. Roy, et A. Chandra, « Change of hardness and chemical potential in chemical binding: a quantitative model », J. Phys. Chem., vol. 98, no 9, p. 2314‑2317, 1994. https://doi.org/10.1021/j100060a018.
    33. J. Mordi et A. Olorunda, « Effect of evaporative cooler environment on the visual qualities and storage life of fresh tomatoes », J. Food Sci. Technol. Mysore, vol. 40, no 6, p. 587‑591, 2003.
    34. M. Sushmita, D. Hemant, et V. Radhacharan, « Vegetables in evaporative cool chamber and in ambient ». Macmillan Publ. Ltd, 2008.
    35. S. Venu, « Development of a Pushcart with Low Energy Storage Sysem for Vegetable Vending », PhD Thesis, University of Agricul-tural Science, 2012.
    36. N. Piloo et E. Vida, « Efficacy of evaporative cool chamber in pasighat condition, Arunachal Pradesh, India », Int. J. Bio-Resour. Stress Manag., vol. 5, no 1, p. 116‑121, 2014. https://doi.org/10.5958/j.0976-4038.5.1.023.
    37. B. Jahun, S. Abdulkadir, S. Musa, et H. Umar, « Assessment of evaporative cooling system for storage of vegetables », Int. J. Sci. Res. IJSR, vol. 5, no 1, p. 1197‑1203, 2016. https://doi.org/10.21275/v5i1.NOV152974.
    38. T. Garuba, O. Mustapha, G. Oyeyiola, et others, « Shelf life and proximate composition of tomato (Solanum lycopersicum L.) fruits as influenced by storage methods », Ceylon J. Sci., vol. 47, no 4, p. 387‑393, 2018. https://doi.org/10.4038/cjs.v47i4.7557.
    39. S. Yahaya et K. Akande, « Development and performance evaluation of pot-in-pot cooling device for Ilorin and it environ », J. Res. Inf. Civ. Eng., vol. 15, no 1, p. 2045‑2059, 2018.
    40. B. Niyomvas et B. Potakarat, « Performance study of cooling pads », in Advanced Materials Research, Trans Tech Publ, 2013, p. 931‑935. https://doi.org/10.4028/www.scientific.net/AMR.664.931.
    41. R. Maurya, N. Shrivastava, et V. Shrivastava, « Performance evaluation of alternative evaporative cooling media », Int. J. Sci. Eng. Res., vol. 5, no 10, p. 676‑684, 2014.
    42. O. Amer, R. Boukhanouf, et H. Ibrahim, « A review of evaporative cooling technologies », Int. J. Environ. Sci. Dev., vol. 6, no 2, p. 111, 2015. https://doi.org/10.7763/IJESD.2015.V6.571.
  • Downloads

  • How to Cite

    Meli Viannie Ingrid, K. . ., Mbetmi Guy-de-patience , F. ., Taga Cybèle , M. ., & Nono Yvette , J. . (2024). Review on water evaporative cooling low-cost devices for tomato fruit preservation. International Journal of Engineering & Technology, 13(2), 272-280. https://doi.org/10.14419/sv586682