Green hydrogen production by proton exchange membrane electrolysis: a sustainable approach

  • Authors

    • Afaf Ahmed University of Technology and Applied Science
    2024-09-16
    https://doi.org/10.14419/bqq3n236
  • Green Hydrogen 1; PEM Principles2; Membrane Materials3; UN Goals 4; PEM Challenges5;PEM Efficiency 6.
  • Abstract

    Extending worldwide request for sustainable energy can be attributed to two con-templations: the decrease of conventional energy sources and climate change. Proton exchange membrane (PEM) electrolysis generates green hydrogen, as attainable sub-stitute for clean and economical energy. In this study the 7,9 UN sustainable goals were applied for the proton exchange membrane (PEM) electrolysis, that split water to oxygen and hydrogen as clean fuel. The goals applied though out all the PEM electrolysis part, to ensure that the method of generating hydrogen through PEM is a sustainable approach for the future clean fuel, within its production with zero carbon emission and within its application in the fuel cells. Results approved that PEM electrolysis offers fast reaction times during load changes, excellent efficiency, and modular stability. It consumes less clean energy and runs at lower pressures and temperatures, which reduces system costs which were aligned with the goals 7. The Current developments in catalysts and membrane materials approved the durability and efficiency which represents UN goal No 9. for the sustainable industry innovative resources for our future cities.

  • References

    1. Su, C. W., Pang, L. D., Qin, M., Lobonţ, O. R., & Umar, M. (2023). The spillover effects fossil fuel, renewables, and carbon markets: Evidence under the dual dilemma of climate change and energy crises. Energy, 274, 127304.‏ https://doi.org/10.1016/j.energy.2023.127304.
    2. World Economic Forum. (2024, January 11). Transform energy demand to meet climate targets - and save money too. https://www.weforum.org/agenda/2024/01/transforming-energy-demand-climate-crisis/.
    3. Hydrogen Council Path to hydrogen competitiveness a cost perspective, (2020), California www.hydrogencouncil.com .
    4. IRENA ,Geopolitics of the Energy Transformation,(2022), The Hydrogen Factor , International Renewable Energy Agency, Abu Dhabi , https://www.irena.org/- me-dia/Files/IRENA/Agency/Publication/2022/Jan/IRENA_Geopolitics_Hydrogen_2022.pdf?rev=1cfe49eee979409686f101ce24ffd71a.
    5. Hydrogen Council , Hydrogen Insights (2022) - an Updated Perspective on Hydrogen Market Development and Actions Required to Unlock Hydrogen at Scale , McKinsey & company September 2022 , https://hydrogencouncil.com/wp-content/uploads/2022/09/Hydrogen-Insights-2022-2.pdf
    6. M. Noussan, P.P. Raimondi, R. Scita, M. Hafner, (2021) .The role of green and blue hydrogen in the energy transition – a technological and geopolitical perspective Sustainability, 13 (1), p. 298. https://doi.org/10.3390/su13010298.
    7. G. Squadrito, L. Andaloro, M. Ferraro, V. Antonucci , Hydrogen fuel cells technology – chapter 16 , A. Basile, A. Iulianelli (Eds.), (2014), Advances in Hydrogen Production, Storage and Distribution, Woodhead Publishing Limited, Cambridge, UK. https://doi.org/10.1533/9780857097736.3.451.
    8. G. Squadrito, G. Giacoppo, O. Barbera, F. Urbani, E. Passalacqua, L. Borello, et al. (2010). Design and development of a 7kW polymer electrolyte membrane fuel cell stack for UPS application , Int. J. Hydrogen Energy, 35 (18) , pp. 9983-9989. https://doi.org/10.1016/j.ijhydene.2009.11.019.
    9. G. Maggio, A. Nicita, G. Squadrito , (2019).How the hydrogen production from RES could change energy and fuel markets: a review of recent literature Int. J. Hydrogen Energy, 44 (23) , pp. 11371-11384. https://doi.org/10.1016/j.ijhydene.2019.03.121.
    10. A. Nicita, G. Maggio, A.P.F. Andaloro, G. Squadrito Green hydrogen as feedstock. (2020) financial analysis of a photovoltaic-powered electrolysis plant , Int. J. Hydrogen Energy, 45 (20) pp. 11395-11408. https://doi.org/10.1016/j.ijhydene.2020.02.062.
    11. G. Squadrito, G. Maggio, A.P.F. Andaloro, A. Nicita . (2020). Distributed hydrogen generation & energy communities for a zero-emission energy economy, E-Book of Abstracts of HYdrogen POwer THeoretical and Engineering Solutions International Symposium - HYPOTHESIS XV, On-Line Conference , pp. 18-19, June 3-5.
    12. G. Maggio, A. Nicita, G. Squadrito , How the hydrogen production from RES could change energy and fuel markets: a review of recent literature ,Int. J. Hydrogen Energy, 44 (23) (2019), pp. 11371-11384. https://doi.org/10.1016/j.ijhydene.2019.03.121 .
    13. A. Nicita, G. Maggio, A.P.F. Andaloro, G. Squadrito , Green hydrogen as feedstock: financial analysis of a photovoltaic-powered elec-trolysis plant, Int. J. Hydrogen Energy, 45 (20) (2020), pp. 11395-11408. https://doi.org/10.1016/j.ijhydene.2020.02.062 .
    14. T. Kato, M. Kubota, N. Kobayashi, Y. Suzuoki , Effective utilization of by-product oxygen of electrolysis hydrogen production , Ener-gy, 30 (2005), pp. 2580-2595. https://doi.org/10.1016/j.energy.2004.07.004.
    15. G. Maggio, G. Squadrito, A. Nicita , Hydrogen and medical oxygen by renewable energy based electrolysis: a green and economically viable route ,Appl. Energy, 306 (2022), Article 117993 https://doi.org/10.1016/j.apenergy.2021.117993.
    16. Nikolaidis, P., & Poullikkas, A. (2017). A comparative overview of hydrogen production processes. Renewable and sustainable energy reviews, 67, 597-611.‏ https://doi.org/10.1016/j.rser.2016.09.044.
    17. Fallisch, A., Schellhase, L., Fresko, J., Zechmeister, M., Zedda, M., Ohlmann, J., ... & Smolinka, T. (2017). Investigation on PEM wa-ter electrolysis cell design and components for a HyCon solar hydrogen generator. International Journal of Hydrogen Energy, 42(19), 13544-13553.‏ https://doi.org/10.1016/j.ijhydene.2017.01.166.
    18. Squadrito, G., Maggio, G., & Nicita, A. (2023). The green hydrogen revolution. Renewable Energy, 216, 119041. ‏ https://doi.org/10.1016/j.renene.2023.119041.
    19. C. Yang et al. , (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells , J Power Sources . https://doi.org/10.1016/S0378-7753(01)00812-6.
    20. Thangavelautham, J. (2018). Degradation in PEM fuel cells and mitigation strategies using system design and control. Proton exchange membrane fuel cell.‏ https://doi.org/10.5772/intechopen.72208 .
    21. Wang, Y., Pang, Y., Xu, H., Martinez, A., & Chen, K. S. (2022). PEM Fuel cell and electrolysis cell technologies and hydrogen infra-structure development–a review. Energy & Environmental Science, 15(6), 2288-2328. https://doi.org/10.1039/D2EE00790H.‏
    22. Zaveri, J. C., Dhanushkodi, S. R., Kumar, C. R., Taler, J., Majdak, M., & Węglowski, B. (2023). Predicting the Perfo.rmance of PEM Fuel Cells by Determining Dehydration or Flooding in the Cell Using Machine Learning Models. Energies, 16(19), 6968.‏ https://doi.org/10.3390/en16196968.
    23. Mo, S., Du, L., Huang, Z., Chen, J., Zhou, Y., Wu, P., ... & Ye, S. (2023). Recent Advances on PEM Fuel Cells: From Key Materials to Membrane Electrode Assembly. Electrochemical Energy Reviews, 6(1), 28.‏ https://doi.org/10.1007/s41918-023-00190-w.
    24. Olabi, A. G., Abdelkareem, M. A., Mahmoud, M. S., Elsaid, K., Obaideen, K., Rezk, H., ... & Sayed, E. T. (2023). Green hydrogen: Pathways, roadmap, and role in achieving sustainable development goals. Process Safety and Environmental Protection.‏ https://doi.org/10.1016/j.psep.2023.06.069.
    25. Prechtl, M. H. (2023). UN Sustainable Development Goal 7: clean energy–a holistic approach towards a sustainable future through hy-drogen storage. RSC Sustainability, 1(7), 1580-1583.‏ https://doi.org/10.1039/D3SU90036C.
    26. Erdemir, D., & Dincer, I. (2024). Development of renewable energy based green hydrogen and oxygen production and electricity gen-eration systems for sustainable aquaculture. Journal of Cleaner Production, 434, 140081.‏ https://doi.org/10.1016/j.jclepro.2023.140081.
    27. Donald, R., & Saunders, R. (2020). Green hydrogen production and wastewater treatmen t enabling the delivery of the UN sustainable development goals. In th e Australian Water Association’s Queensland Conference, Twin Waters (Vol. 11, p. 2020).‏
    28. Aslam, S., Rani, S., Lal, K., Fatima, M., Hardwick, T., Shirinfar, B., & Ahmed, N. (2023). Electrochemical hydrogen production: sus-tainable hydrogen economy. Green Chemistry, 25(23), 9543-9573.‏ https://doi.org/10.1039/D3GC02849F.
    29. Olabi, A.; Bahri, A.S.; Abdelghafar, A.A.; Baroutaji, A.; Sayed, E.T.; Alami, A.H.; Rezk, H.; Abdelkareem, M.A. (2021) Large-vscale hydrogen production and storage technologies: Current status and future directions. Int. J. Hydrog. Energy , 46, 23498–23528. https://doi.org/10.1016/j.ijhydene.2020.10.110.
    30. Purnami; Hamidi, N.; Sasongko, M.N.; Widhiyanuriyawan, D.; Wardana, I. , (2020) ,Strengthening external magnetic fields with acti-vated carbon graphene for increasing hydrogen production in water electrolysis. Int. J. Hydrog. Energy, 45, 19370–19380. https://doi.org/10.1016/j.ijhydene.2020.05.148.
    31. Toghyani, S.; Baniasadi, E.; Afshari, E. , (2021) ,Performance assessment of an electrochemical hydrogen production and storage sys-tem for solar hydrogen refueling station. Int. J. Hydrog. Energy 46, 24271–24285. https://doi.org/10.1016/j.ijhydene.2021.05.026.
    32. Han, C.; Vinel, A, (2022), Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimiza-tion. Energy 239, 122099. https://doi.org/10.1016/j.energy.2021.122099.
    33. Lei, G.; Song, H.; (2020) ,Rodriguez, D. Power generation cost minimization of the grid-connected hybrid renewable energy system through optimal sizing using the modified seagull optimization technique. Energy Rep., 6, 3365–3376. https://doi.org/10.1016/j.egyr.2020.11.249.
    34. Li, L.; Wang, X. , (2021)Design and operation of hybrid renewable energy systems: Current status and future perspectives. Curr. Opin. Chem. Eng. 31, 100669. https://doi.org/10.1016/j.coche.2021.100669.
    35. Sarker, A. K., Azad, A. K., Rasul, M. G., & Doppalapudi, A. T. (2023). Prospect of Green Hydrogen Generation from Hybrid Renewa-ble Energy Sources: A Review. Energies, 16(3), 1556.‏ https://doi.org/10.3390/en16031556.
    36. Millet, P., Mbemba, N., Grigoriev, S. A., Fateev, V. N., Aukauloo, A., & Etiévant, C. (2011). Electrochemical performances of PEM water electrolysis cells and perspectives. International Journal of Hydrogen Energy, 36(6), 4134-4142.‏ https://doi.org/10.1016/j.ijhydene.2010.06.105
    37. Mališ, J., Mazúr, P., Paidar, M., Bystron, T., & Bouzek, K. (2016). Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure. International Journal of Hydrogen Energy, 41(4), 2177-2188.‏ https://doi.org/10.1016/j.ijhydene.2015.11.102.
    38. Kumar, S. S., & Himabindu, V. (2019). Hydrogen production by PEM water electrolysis–A review. Materials Science for Energy Technologies, 2(3), 442-454.‏ https://doi.org/10.1016/j.mset.2019.03.002.
    39. Xu, W., & Scott, K. (2010). The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance. In-ternational Journal of Hydrogen Energy, 35(21), 12029-12037.‏ https://doi.org/10.1016/j.ijhydene.2010.08.055.
    40. Hu, J. M., Zhang, J. Q., & Cao, C. N. (2004). Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of Tafel lines and EIS. International Journal of Hydrogen Energy, 29(8), 791-797.‏ https://doi.org/10.1016/j.ijhydene.2003.09.007.
    41. Millet, P., Andolfatto, F., & Durand, R. (1996). Design and performance of a solid polymer electrolyte water electrolyzer. International journal of hydrogen energy, 21(2), 87-93. https://doi.org/10.1016/0360-3199(95)00005-4.
    42. Andolfatto, F., Durand, R., Michas, A., Millet, P., & Stevens, P. (1994). Solid polymer electrolyte water electrolysis: electrocatalysis and long-term stability. International Journal of Hydrogen Energy, 19(5), 421-427.‏ https://doi.org/10.1016/0360-3199(94)90018-3.
    43. Mazúr, P., Polonský, J., Paidar, M., & Bouzek, K. (2012). Non-conductive TiO2 as the anode catalyst support for PEM water electrol-ysis. International Journal of Hydrogen Energy, 37(17), 12081-12088.‏ https://doi.org/10.1016/j.ijhydene.2012.05.129.
    44. Corrales-Sánchez, T., Ampurdanés, J., & Urakawa, A. (2014). MoS2-based materials as alternative cathode catalyst for PEM electroly-sis. International journal of hydrogen energy, 39(35), 20837-20843.‏ https://doi.org/10.1016/j.ijhydene.2014.08.078.
    45. Lee, S. J., Mukerjee, S., McBreen, J., Rho, Y. W., Kho, Y. T., & Lee, T. H. (1998). Effects of Nafion impregnation on performances of PEMFC electrodes. Electrochimica Acta, 43(24), 3693-3701.‏ https://doi.org/10.1016/S0013-4686(98)00127-3.
    46. Grigoriev, S. A., Millet, P., Korobtsev, S. V., Porembskiy, V. I., Pepic, M., Etievant, C., ... & Fateev, V. N. (2009). Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis. International Journal of Hydrogen Energy, 34(14), 5986-5991.‏ https://doi.org/10.1016/j.ijhydene.2009.01.047.
    47. Ma, H., Liu, C., Liao, J., Su, Y., Xue, X., & Xing, W. (2006). Study of ruthenium oxide catalyst for electrocatalytic performance in ox-ygen evolution. Journal of Molecular Catalysis A: Chemical, 247(1-2), 7-13.‏ https://doi.org/10.1016/j.molcata.2005.11.013.
    48. Cheng, J., Zhang, H., Chen, G., & Zhang, Y. (2009). Study of IrxRu1− xO2 oxides as anodic electrocatalysts for solid polymer electro-lyte water electrolysis. Electrochimica Acta, 54(26), 6250-6256.‏ https://doi.org/10.1016/j.electacta.2009.05.090.
    49. Audichon, T., Mayousse, E., Morisset, S., Morais, C., Comminges, C., Napporn, T. W., & Kokoh, K. B. (2014). Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile. international journal of hydrogen energy, 39(30), 16785-16796.‏ https://doi.org/10.1016/j.ijhydene.2014.07.170.
    50. Fujigaya, T., Shi, Y., Yang, J., Li, H., Ito, K., & Nakashima, N. (2017). A highly efficient and durable carbon nanotube-based anode electrocatalyst for water electrolyzers. Journal of Materials Chemistry A, 5(21), 10584-10590.‏ https://doi.org/10.1039/C7TA01318C.
    51. Lim, J., Park, D., Jeon, S. S., Roh, C. W., Choi, J., Yoon, D., ... & Lee, H. (2018). Ultrathin IrO2 nanoneedles for electrochemical water oxidation. Advanced Functional Materials, 28(4), 1704796.‏ https://doi.org/10.1002/adfm.201704796.
    52. Kim, I. G., Lim, A., Jang, J. H., Lee, K. Y., Nah, I. W., & Park, S. (2021). Leveraging metal alloy-hybrid support interaction to enhance oxygen evolution kinetics and stability in proton exchange membrane water electrolyzers. Journal of Power Sources, 501, 230002.‏ https://doi.org/10.1016/j.jpowsour.2021.230002.
    53. Kwon, T., Hwang, H., Sa, Y. J., Park, J., Baik, H., Joo, S. H., & Lee, K. (2017). Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Advanced Functional Materials, 27(7), 1604688.‏ https://doi.org/10.1002/adfm.201604688.
    54. Choi, K. J., & Kim, S. K. (2023). A Pt cathode with high mass activity for proton exchange membrane water electrolysis. International Journal of Hydrogen Energy, 48(3), 849-863.‏ https://doi.org/10.1016/j.ijhydene.2022.09.308.
    55. Bernt, M., Hartig‐Weiß, A., Tovini, M. F., El‐Sayed, H. A., Schramm, C., Schröter, J., ... & Gasteiger, H. A. (2020). Current challenges in catalyst development for PEM water electrolyzers. Chemie Ingenieur Technik, 92(1-2), 31-39.‏ https://doi.org/10.1002/cite.201900101.
    56. Pei, S., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210-3228.‏ Corrales-Sánchez, T., Ampurdanés, J., & Urakawa, A. (2014). MoS2-based materials as alt https://doi.org/10.1016/j.carbon.2011.11.010.
    57. orrales-Sánchez, T., Ampurdanés, J., & Urakawa, A. (2014). MoS2-based materials as alternative cathode catalyst for PEM electrolysis. International journal of hydrogen energy, 39(35), 20837-20843.‏ https://doi.org/10.1016/j.ijhydene.2014.08.078.
    58. Jayakumar, A., Sethu, S. P., Ramos, M., Robertson, J., & Al-Jumaily, A. (2015). A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics, 21, 1-18.‏ https://doi.org/10.1007/s11581-014-1322-x.
    59. Park, S., Lee, J. W., & Popov, B. N. (2012). A review of gas diffusion layer in PEM fuel cells: Materials and designs. International Journal of Hydrogen Energy, 37(7), 5850-5865.‏ https://doi.org/10.1016/j.ijhydene.2011.12.148.
    60. De Las Heras, N., Roberts, E. P. L., Langton, R., & Hodgson, D. R. (2009). A review of metal separator plate materials suitable for au-tomotive PEM fuel cells. Energy & Environmental Science, 2(2), 206-214.‏ https://doi.org/10.1039/B813231N.
    61. H. Yu, B. Yi ,(2018) ,Hydrogen for energy storage and hydrogen production from electrolysis , Strategic Study Chin Acad Eng, 20 (3) , pp. 58-65. https://doi.org/10.15302/J-SSCAE-2018.03.009.
    62. Peng, L., & Wei, Z. (2020). Catalyst engineering for electrochemical energy conversion from water to water: water electrolysis and the hydrogen fuel cell. Engineering, 6(6), 653-679.‏ https://doi.org/10.1016/j.eng.2019.07.028.
    63. S.S. Penner , (2006) , Steps toward the hydrogen economy nergy, 31 (1) , pp. 33-43. https://doi.org/10.1016/j.energy.2004.04.060.
    64. G. Marbán, T. Valdés-Solís, (2007) Towards the hydrogen economy? Int J Hydrogen Energy, 32 (12) , pp. 1625-1637 https://doi.org/10.1016/j.ijhydene.2006.12.017.
    65. Dresselhaus MS. Basic research needs for the hydrogen economy,(2004) . In: Proceedings of American Physical Society March Meet-ing 2004; Mar 22–26; Montreal, QB, Canada; 2004.
    66. J.N. Armor (2005) , Catalysis and the hydrogen economy , Catal Lett, 101 (3–4) , pp. 131-135https://doi.org/10.1007/s10562-005-4877-3.
    67. D.G. Vlachos, S. Caratzoulas , (2010)The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis Chem Eng Sci, 65 (1) , pp. 18-29. https://doi.org/10.1016/j.ces.2009.09.019.
    68. Wang, T., Cao, X., & Jiao, L. (2022). PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. Carbon Neutrality, 1(1), 21.‏ https://doi.org/10.1007/s43979-022-00022-8.
    69. Tawalbeh, M., Alarab, S., Al-Othman, A., & Javed, R. M. N. (2022). The operating parameters, structural composition, and fuel sus-tainability aspects of PEM fuel cells: a mini review. Fuels, 3(3), 449-474.‏ https://doi.org/10.3390/fuels3030028.
    70. Wang, T., Cao, X., & Jiao, L. (2022). PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. Carbon Neutrality, 1(1), 21.‏ https://doi.org/10.1007/s43979-022-00022-8.
    71. Wu, Q., Wang, Y., Zhang, K., Xie, Z., Sun, K., An, W., ... & Zou, X. (2023). Advances and status of anode catalysts for proton ex-change membrane water electrolysis technology. Materials Chemistry Frontiers.‏ https://doi.org/10.1039/D3QM00010A.
    72. Dong, Y., Gao, L., Ma, S., Yao, X., & Li, X. (2023, October). Impact of Power Quality in Specific Energy Consumption of PEM Water Electrolyzer. In 2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) (pp. 1-2). IEEE.‏ https://doi.org/10.1109/ASEMD59061.2023.10369152.
    73. Carmo, M., Fritz, D. L., Mergel, J., & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. International journal of hydrogen energy, 38(12), 4901-4934.‏Current Challenges in Catalyst Developmentfor PEM Water Electrolyzers. https://doi.org/10.1016/j.ijhydene.2013.01.151.
    74. Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411), 294-303. https://doi.org/10.1038/nature11475.
    75. Hyung Kweon, D., Jeon, I. Y., & Baek, J. B. (2021). Electrochemical catalysts for green hydrogen energy. Advanced Energy and Sus-tainability Research, 2(7), 2100019. https://doi.org/10.1002/aesr.202100019.
    76. Suen, N. T., Hung, S. F., Quan, Q., Zhang, N., Xu, Y. J., & Chen, H. M. (2017). Electrocatalysis for the oxygen evolution reaction: re-cent development and future perspectives. Chemical Society Reviews, 46(2), 337-365. https://doi.org/10.1039/C6CS00328A.
    77. Wang, T., Cao, X., & Jiao, L. (2022). PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. Carbon Neutrality, 1(1), 21.‏ https://doi.org/10.1007/s43979-022-00022-8.
    78. Immerz, C., Paidar, M., Papakonstantinou, G., Bensmann, B., Bystron, T., Vidakovic-Koch, T., ... & Hanke-Rauschenbach, R. (2018). Effect of the MEA design on the performance of PEMWE single cells with different sizes. Journal of Applied Electrochemistry, 48(6), 701-711.‏ https://doi.org/10.1007/s10800-018-1178-2.
    79. Suermann, M., Kiupel, T., Schmidt, T. J., & Büchi, F. N. (2017). Electrochemical hydrogen compression: efficient pressurization con-cept derived from an energetic evaluation. Journal of The Electrochemical Society, 164(12), F1187.‏ https://doi.org/10.1149/2.1361712jes.
    80. Scheepers, F., Stähler, M., Stähler, A., Rauls, E., Müller, M., Carmo, M., & Lehnert, W. (2020). Improving the efficiency of PEM elec-trolyzers through membrane-specific pressure optimization. Energies, 13(3), 612.‏ https://doi.org/10.3390/en13030612.
  • Downloads

  • How to Cite

    Ahmed, A. (2024). Green hydrogen production by proton exchange membrane electrolysis: a sustainable approach. International Journal of Engineering & Technology, 13(2), 311-318. https://doi.org/10.14419/bqq3n236