Fuzzy-PID control algorithm of a loop reactor for microbial corrosion testing
-
2015-06-01 https://doi.org/10.14419/ijet.v4i3.4164 -
UZZY-PID Algorithm, Intelligent Thermal Control, Loop Reactor Process, Microbial Corrosion Testing. -
Abstract
The thermal control of loop reactor utilized to run hydrodynamic tests of microbical corrosion, where full control of the temperature is crucial, is presented. Since the accuracy of the temperature is critical along the pipe trajectory for the microbial culture, it must be controlled with an accuracy of ± 0.5°C, which is achieved by an implemented fuzzy-PID (Proportional Integral and Derivative) control algorithm, capable to provide the accuracy at the temperature range required. The system counts with an especially-designed software to program the desired temperature. Several tests were carried out at different temperatures and water volumes to characterize the rising time and thermal inertia presented by the system. As a result, the performance and power consumption were notability improved.
-
References
[1] C. G. Hill, Chemical Engineering Kinetics and Reactor Design, John Wiley and Sons, New York, 1977.
[2] D. Zheng and K.A. Hoo, System identification and model-based control for distributed parameters systems, Computers and Chemical Engineering 28(8) (2004) 1361-1375. http://dx.doi.org/10.1016/j.compchemeng.2003.09.035.
[3] W. Zhnag and R. Zhang, Cascade fuzzy control for gas engine driven heat pump, Energy Conversion and Management 46 (2005) 1757-1766. http://dx.doi.org/10.1016/j.enconman.2004.09.003.
[4] H. Nahel and D. Panagiotis, Coordinating feedback and switching for control of spatially distributed process, Computers and Chemical Engineering 28 (2004) 111-128. http://dx.doi.org/10.1016/S0098-1354(03)00174-1.
[5] A.P. Melo, J.C. Pinto and E.C. Biscaia, Characterization of the residence time distribution in loop reactors, Chemical Engineering Science 56 (2001) 2703-2713. http://dx.doi.org/10.1016/S0009-2509(00)00517-0.
[6] O. Castillo, A. Alanis, M. GarcÃa and H. Arias, An intuitionistic fuzzy system for time series analysis in plant monitoring and diagnosis, Applied Soft Computing 7 (2007) 1227-1233. http://dx.doi.org/10.1016/j.asoc.2006.01.010.
[7] L. Sheremetov, I. Batyrshin, D. Filatov, J. MartÃnez and H. RodrÃguez, Fuzzy expert system for solving lost circulation problem, Applied Soft Computing, 8 (2008) 14-29. http://dx.doi.org/10.1016/j.asoc.2006.11.003.
[8] W. Wang, L. Han-Xiong and Z. Jingtao, A hybrid approach for supervisory control of furnace temperature, Control Engineering Practice 11 (2003) 1325-1334. http://dx.doi.org/10.1016/S0967-0661(02)00257-5.
[9] M. Santos and E.D Dexter, Control of a cryogenic process using a fuzzy PID scheduler, Control Engineering Practice 10 (2002) 1147-1152. http://dx.doi.org/10.1016/S0967-0661(02)00062-X.
[10] B.M. Mohan and A. Shina, Analytical structure and stability analysis of a PID controller, Applied Soft Computing, 8 (2008) 749-758. http://dx.doi.org/10.1016/j.asoc.2007.06.003.
[11] T. Hong and W.P Jepson, Corrosion inhibitor studies in large flow loop at high temperature and high pressure, Corrosion Science 43 (2001) 1839-1849. http://dx.doi.org/10.1016/S0010-938X(01)00002-6.
[12] A. K. Lee, M. G. Buehler and D. K. Newman, Influence of a dual-species biofilm on the corrosion of mild steel, Corrosion Science 48 (2006) 165–178. http://dx.doi.org/10.1016/j.corsci.2004.11.013.
[13] I. Perissi, U. Bardi, S. Caporali and A. Lavacchi, High temperature corrosion properties of ionic liquids, Corrosion Science 48 (2006) 2349-2362. http://dx.doi.org/10.1016/j.corsci.2006.06.010.
[14] M. Papagiannia and M. Matev, Desing of a tubular loop bioreactor for scale-down of fermentation processes, Biotechnology Progress 19(5) (2003) 1498-1504. http://dx.doi.org/10.1021/bp030002y.
[15] J.A. Trilleros and P. Redondo, Three-phase airlift internal loop reactor: correlations for predicting the main fluid dynamic parameters, Journal of Chemical Technology and Biotechnology 80(5) (2005) 515-522. http://dx.doi.org/10.1002/jctb.1209.
[16] R. Cheesewright, C. Clark and D.Bisset, Understanding the experimental response of Coriolis mass flow meters to flow pulsations. Flow Measurement and Instrumentation 10 (1999) 207-215. http://dx.doi.org/10.1016/S0955-5986(99)00014-X.
[17] Y. Ji and K.O. Homan, Transition from gravity–to inertia-dominated behavior computed for the turbulent stably-stratified filling of an open enclosure, International Journal of Heat and Fluid Flow 27 (3) (2006) 490-501. http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.11.006.
[18] F.S. Estrada, A.C. Cleland and D.J. Cleland, Prediction of the dynamical thermal behavior of walls for refrigeration rooms using lumped and distributed parameter model, International Journal of Refrigeration 24 (2001) 272-284. http://dx.doi.org/10.1016/S0140-7007(00)00018-9.
[19] M. Galluzo, R. Ducato, V. Bartolozzi and A. Pocciotto, Expert control of DO in the aerobic reactor of an activated sludge process, Computers and Chemical Engineering 25 (2001) 619-625. http://dx.doi.org/10.1016/S0098-1354(01)00642-1.
[20] Y.T. Juang, Y.T. Chen and C.P. Huang, Design of fuzzy PID controllers using modified triangular membership functions, Information Sciences, 178 (2008) 1325-1333. http://dx.doi.org/10.1016/j.ins.2007.10.020.
[21] P. Melin and O. Castillo, Automated mathematical modeling and simulation for bacteria growth control in the food industry using artificial intelligence and fractal theory, Journal of. Systems, Analysis, Modeling and Simulations 29 (1997) 189-206.
[22] P. Melin, O. Castillo, Modeling, simulation and control of non-linear dynamical systems, Taylor and Francis Inc., New York, 2002.
[23] T. Takagi and M. Sugeno, Fuzzy identification systems and its applications to modeling and control, in: IEEE Transactions on Systems Man and Cybernetics Part A, 15 (1985) 116-132. http://dx.doi.org/10.1109/TSMC.1985.6313399.
[24] A. Hua, M. Mangold, A. Kienie and D. Gilles. Nonlinear inferential control of an autonomous periodic fixed-bed reactor, Journal of Process Control 4 (1998) 239-250. http://dx.doi.org/10.1016/S0959-1524(97)00048-6.
[25] P. Sarma, Multivariable gain-schedule fuzzy logic control of an exothermic reactor, Engineering Applications of Artificial Intelligence 14 (2001) 457-471. http://dx.doi.org/10.1016/S0952-1976(01)00003-3.
[26] H. Nahel and D. Panagiotis, Integrating robustness optimally and constraints in control of nonlinear processes. Chemical Engineering Science 56 (2001) 1841-1868. http://dx.doi.org/10.1016/S0009-2509(00)00530-3.
[27] H. Chin-an and C. Rongshun, Intelligent control of exit temperature in a gas-fuel can-type combustor, Engineering Applications of Artificial Intelligence 15 (2002) 391-400. http://dx.doi.org/10.1016/S0952-1976(02)00092-1.
-
Downloads
-
How to Cite
Rangel-Miranda, D., Alaniz-Lumbreras, D., & Castano, V. (2015). Fuzzy-PID control algorithm of a loop reactor for microbial corrosion testing. International Journal of Engineering & Technology, 4(3), 414-423. https://doi.org/10.14419/ijet.v4i3.4164Received date: 2015-01-12
Accepted date: 2015-02-10
Published date: 2015-06-01