Enhancement of nonwoven cellulose triacetate forward-osmosis membranes by surface coating modification

  • Authors

    • Hanaa Aly National research center
    • Hanaa Gadallah National research center
    • Sahar Ali National research center
    • Rania Sabry National research center
    2017-10-03
    https://doi.org/10.14419/ijet.v6i4.7634
  • Desalination, Forward osmosis, hydrophilic coating materials, nonwoven membranes, Surface coating modification.
  • Forward osmosis (FO) is considered as one of the emerging techniques in membrane technology. The enhancement of FO performance is governed by two major factors: the first one is development of high-performance draw solutions and the second is utilizing of high efficient FO membranes. The aim of this work is to investigate chemical surface coating modification of commercial nonwoven forward osmosis membrane with new hydrophilic coating materials namely, o-phenylene di-amine and benzoyl chloride. The effect of coating addition at different concentrations was studied. The membrane morphology and chemical structure characterization of modified membranes proved the formation of dense layer and higher membrane porosity. Finally, it was demonstrated that increasing of coating material concentration gradually increases porosity and membrane performance till 0.75 g/l. By further increasing of coating materials, the porosity and membrane performance tend to decrease.

  • References

    1. [1] S. Zhao, L. Zou, et al., Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci. 396 (2012) 1–21. https://doi.org/10.1016/j.memsci.2011.12.023.

      [2] D. L. Shaffer, J. R.Werber, H. Jaramillo, S. Lin, M. Elimelech, Forward osmosis: Where are we now?, Desalination 356 (2015) 271–284. https://doi.org/10.1016/j.desal.2014.10.031.

      [3] T. Y. Cath, A. E. Childress, et al., Forward osmosis: principles, applications, and recent developments, J. Membr. Sci. 281 (2006) 70–87. https://doi.org/10.1016/j.memsci.2006.05.048.

      [4] J. R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci. 284 (2006) 237–247. https://doi.org/10.1016/j.memsci.2006.07.049.

      [5] Y. Kim, M. Elimelech, et al., Combined organic and colloidal fouling in forward osmosis: fouling reversibility and the role of applied pressure, J. Membr. Sci. 460 (2014) 206–212. https://doi.org/10.1016/j.memsci.2014.02.038.

      [6] S. Lee, C. Boo, et al., Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO), J. Membr. Sci. 365 (2010) 34–39. https://doi.org/10.1016/j.memsci.2010.08.036.

      [7] J.-B. Lee, K.-K. Park, H.-M. Eum, C.-W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination 196 (2006) 125–134. https://doi.org/10.1016/j.desal.2006.01.011.

      [8] K. Y. Wang, T. S. Chung, G. Amy, Developing thin-film-composite forward osmosis membranes on the PES/SPSf substrate through hinter facial polymerization, AIChE J. 58 (2012) 770–781. https://doi.org/10.1002/aic.12635.

      [9] S. Zhang, K. Y. Wang, T.-S. Chung, H. Chen, Y.C. Jean, G. Amy, Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, J. Membr. Sci. 360 (2010) 522–535. https://doi.org/10.1016/j.memsci.2010.05.056.

      [10] J. Su, Q. Yang, J.F. Teo, T.S. Chung, Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes, J. Membr. Sci. 355 (2010) 36–44. https://doi.org/10.1016/j.memsci.2010.03.003.

      [11] K. Y. Wang, R.C. Ong, T.S. Chung, Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer, Ind. Eng. Chem. Res. 49 (2010) 4824–4831. https://doi.org/10.1021/ie901592d.

      [12] S. Zhang, K.Y. Wang, T.S. Chung, Y.C. Jean, H. Chen, Molecular design of the cellulose ester-based forward osmosis membranes for desalination, Chem. Eng. Sci. 66 (2011) 2008–2018. https://doi.org/10.1016/j.ces.2011.02.002.

      [13] K. Y. Wang, R.C. Ong, T.S. Chung, Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer, Ind. Eng. Chem. Res. 49 (2010) 4824–4831. https://doi.org/10.1021/ie901592d.

      [14] J. Su, T.-S. Chung, B.J. Helmer, J.S. de Wit, Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using Sucrose as draw solute, J. Membr. Sci. 396 (2012) 92–100. https://doi.org/10.1016/j.memsci.2012.01.001.

      [15] M. Sairam, E. Sereewatthanawut, K. Li, A. Bismarck, A.G. Livingston, Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis-Desalination using MgSO4 draw solution, Desalination 273 (2011) 299–307. https://doi.org/10.1016/j.desal.2011.01.050.

      [16] N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, M. Elimelech, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol. 44 (2010) 3812–3818. https://doi.org/10.1021/es1002555.

      [17] A. Tiraferri, N.Y. Yip, W. A. Phillip, J. D. Schiffman, M. Elimelech, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367 (1) (2011) 340-352. https://doi.org/10.1016/j.memsci.2010.11.014.

      [18] C. H. Tan, H.Y. Ng, Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations J. Membr. Sci. 324 (1) (2008) 209-219. https://doi.org/10.1016/j.memsci.2008.07.020.

      [19] J. R. McCutcheon, M. Elimelech, Modeling water flux in forward osmosis: Implications for improved membrane design, AIChE J. 53 (7) (2007) 1736-1744. https://doi.org/10.1002/aic.11197.

      [20] S. Loeb, L. Titelman, E. Korngold and J. Freiman, "Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane", J. Membr. Sci. 129 (1997) 243–249. https://doi.org/10.1016/S0376-7388(96)00354-7.

      [21] M.M.A. Shirazi, A. Kargari, M. Tabatabaei, Evaluation of commercial PTFE membranes in desalination by direct contact membrane distillation, Chem. Eng. Process 76 (2014) 16–25. https://doi.org/10.1016/j.cep.2013.11.010.

      [22] H.M.N. AlMadani, Water desalination by solar powered electrodialysis process, Renew. Energy 28 (2003) 1915–1924. https://doi.org/10.1016/S0960-1481(03)00014-4.

      [23] L. Chekli, S. Phuntsho, H.K. Shon, S. Vigneswaran, J. Kandasamy, A. Chanan, A review of draw solutes in forward osmosis process and their use in modern applications, Desalin. Water Treat. 43 (2012) 167–184. https://doi.org/10.1080/19443994.2012.672168.

      [24] M.M. Ling, T.S. Chung, X. Lu, Facile synthesis of thermosensitive magnetic nanoparticles as smart draw solutes in forward osmosis, Chem. Commun. 47 (2011) 10788–10790. https://doi.org/10.1039/c1cc13944d.

      [25] B.X. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents, J. Membr. Sci. 348 (2010) 337–345. https://doi.org/10.1016/j.memsci.2009.11.021.

      [26] B.X. Mi, M. Elimelech, Silica scaling and scaling reversibility in forward osmosis, Desalination 312 (2013) 75–81. https://doi.org/10.1016/j.desal.2012.08.034.

      [27] Z.Y. Li, V.Y. Quintanilla, R.V. Linares, Q.Y. Li, T. Zhan, G. Amy, Flux patterns and membrane fouling propensity during desalination of seawater by forward osmosis, Water Res. 46 (2012) 195–204. https://doi.org/10.1016/j.watres.2011.10.051.

      [28] R.E. Kravath, J.A. Davis, Desalination of seawater by direct osmosis, Desalination 16 (1975) 151–155. https://doi.org/10.1016/S0011-9164(00)82089-5.

      [29] S. D. Pardeshi, S. N. Thore â€Mild and Efficient Synthesis of 2-Aryl Benzimidazoles in Water Using SDS, International Journal of Chemical and Physical Sciences, IJCPS Vol. 4 Special Issue – NCSC Jan-2015

      [30] H. Gadallah, H. M. Ali, S. S. Ali , R. Sabry, A. G. Gadallah, “Application of Forward/Reverse Osmosis Hybrid System for Seawater Desalination using Impaired Water from Steel Industryâ€, Part (1): FO Performance, European Journal of Scientific Research Vol.126, No.2, 2014.

      [31] Y. Lai, and R.Y. Chen, (1992), "Preparation and properties of vinyl acetate-grafted nylon 6 membranes by using homo-grafting method", J. Membr. Sci., 66(2-3), 169-178. https://doi.org/10.1016/0376-7388(92)87007-K.

      [32] Q. Zheng, P. Wang, Y. Yang, and D. Cui, (2006), "The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane", J. Membr. Sci., 286(1-2), 7-11. https://doi.org/10.1016/j.memsci.2006.09.033.

      [33] T.P.N. Nguyen, J.E Gu, H.G. Park and Y.N. Kwon Development of desirable CTA/CA-based membrane for forward osmosis. IWA Busan 2012 - Full paper of manuscript number IWA-8453 Click here to download Manuscript: IWA Busan 2012 - Full paper of manuscript number IWA-8453.doc

      [34] P. Qu, H. Tang, Y. GAO, L. Zhang, S. Wang, Polyether sulfone composite membrane blended with fibrils cellulose. Bioresorce 5(4) 2010 pp 2323-2336.

      [35] W. Albrecht, B. Seifert, Th. Weigel, M. Schossig, A. Hollander, Th. Groth, R. Hilke, Amination of poly(ether imide) membranes using di- and multivalent amines, Macromol. Chem. Phys., 204 (2003) 510. https://doi.org/10.1002/macp.200390016.

      [36] Y. Ãlvarez-Gallego; B. Ruffmann; V. Silva; H. Silva; A.E. Lozano; J.G. de la Campa,; S.P. Nunes; J. de Abajo, Sulfonated polynaphthalimides with benzimidazole pendant groups. Polymer 2008, 49, 3875–3883 https://doi.org/10.1016/j.polymer.2008.06.048.

      [37] C. Trimpert, G. Boese, W. Albrecht, K. Richau, Th. Weigel, A. Lendlein, Th. Groth. Poly (ether imide) membranes modified with poly (ethylene imine) as potential carriers for epidermal substitutes, Macromol. Biosci, 6 (2006) 274. https://doi.org/10.1002/mabi.200500238.

      [38] B. Bardakc¸ı and S. Bahc¸eli an IR Study of Benzoyl Chloride Adsorbed on KA, NaA, and CaA Zeolites, http://znaturforsch.com.

      [39] T.P.N. Nguyen, J.E Gu, H.G. Park and Y.N. Kwon Development of desirable CTA/CA-based membrane for forward osmosis. IWA Busan 2012 - Full paper of manuscript number IWA-8453 Click here to download Manuscript: IWA Busan 2012 - Full paper of manuscript number IWA-8453.doc

      [40] B.A Chaoyi PhD Thesis" Design of advanced reverse osmosis and nanofiltration membranes for water purification.University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois.

      [41] S. Zhang, K.Y. Wang, T.-S. Chung, H. Chen, Y.C. Jean, G. Amy, Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer, Journal of Membrane Science 360 (1–2) (2010) 522. https://doi.org/10.1016/j.memsci.2010.05.056.

      [42] K.Y. Wang, T.-S. Chung, J.-J. Qin, Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process, Journal of Membrane Science 300 (1–2) (2007) 6. https://doi.org/10.1016/j.memsci.2007.05.035.

      [43] Jason T. Arenaa, Bryan McCloskeyb, Benny D. Freemanc, Jeffrey R. McCutcheon, Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis Journal of Membrane Science 375 (2011) 55–62. https://doi.org/10.1016/j.memsci.2011.01.060.

      [44] G. Han, S. Zhang, X. Li, N. Widjojo, T. ShungChung Thin film composite forward osmosis membranes based on polydopamine modified polysulfone substrates with enhancements in both water flux and salt rejection Chemical Engineering Science 80 (2012) 219–231. https://doi.org/10.1016/j.ces.2012.05.033.

      [45] Y.H. See-Toh, F.C. Ferreira, A.G. Livingston, The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes, J. Membr. Sci., 299 (2007) 236. https://doi.org/10.1016/j.memsci.2007.04.047.

      [46] Z. Zhao, and D.Mulcahy, “Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute,†Desalination, vol. 284, pp. 175–181, 2012. https://doi.org/10.1016/j.desal.2011.08.053.

      [47] H. M. Ali, H. Gadallah, S. S. Ali, R. Sabry, A. G. Gadallah, “Pilot-Scale Investigation of Forward/Reverse Osmosis Hybrid System for Seawater Desalination Using Impaired Water from Steel Industryâ€, International Journal of Chemical Engineering, Volume 2016, Article ID 8745943, 9 pages.

      [48] E. Arkhangelsky, F. Wicaksana, S. Chou, A. Al-Rabiah, M.S. Al-Zahrani, R. Wang. J Membr Sci 2012; 415–416: 101–108. https://doi.org/10.1016/j.memsci.2012.04.041.

      [49] M. Elimelech, A.W. Phillip. Science 2011; 333: 712–717. https://doi.org/10.1126/science.1200488.

      [50] S. Zhao, L. Zou, Y.C. Tangb, D. Mulcahya. J Membr Sci 2012; 396: 1– 21. https://doi.org/10.1016/j.memsci.2011.12.023.

      [51] G. Gray, J. McCutcheon, M. Elimelech. Desalination 2006; 197: 1–8. https://doi.org/10.1016/j.desal.2006.02.003.

      [52] S.S. Ali; R. Sabry; H. Gadallah and H.M. Ali, “Investigation of ammonium sulfate/ammonium di-hydrogen phosphate fertilizers as draw solute for forward osmosis desalinationâ€, Research Journal of Pharmaceutical, Biological and Chemical Sciences, January–February 2016, 7 (1), pp. 76. http://www.sphinxsai.com/article_proc.php.

  • Downloads

  • How to Cite

    Aly, H., Gadallah, H., Ali, S., & Sabry, R. (2017). Enhancement of nonwoven cellulose triacetate forward-osmosis membranes by surface coating modification. International Journal of Engineering & Technology, 6(4), 124-130. https://doi.org/10.14419/ijet.v6i4.7634