Performance comparison prediction of energy states of atoms in doxorubin and docetaxel using various computational simulations for cancer treatment
-
2018-03-01 https://doi.org/10.14419/ijet.v7i1.9.9754 -
Molecular Energy, Free Energy, Virtual Screening -
Abstract
Every atoms or compounds must have ground state as well as excited state when they are participating in chemical reactions. Drug is also a chemical compound which also has the two states. Computing the physical properties of a drug compound and calculate its energy states and Comparing the ground state and excited state performance of aromatic cyclic cancer drugs like doxorubicin and docetaxel using various types of cheminformatics methods.in our work we are using so many physical properties like surface area of an atom etc. to check the efficiency of drug.
-
References
[1] Houk&paul ha-yeoncheong, (2009),†computational prediction of small-molecule catalysts†google scholar.
[2] Jerry w. cubbage and william s. jenks (2001) “computational studies of the ground and excited state potentials of DMSO and H2SO: relevance to photostereomutationâ€.
[3] Eugene j. lynch, amy l. speelman, Bryce a. curry, Charles s. murillo, and jason g. Gillmor, (2012),†expanding and testing a computational method for predicting the ground state reduction potentials of organic molecules on the basis of empirical correlation to experimentâ€.
[4] Schoendorff, G., Morris, A. R., Hu, E. D., & Wilson, A. K. (2015). A computational study on the ground and excited states of nickel silicide. The Journal of Physical Chemistry A, 119(37), 9630-9635.https://doi.org/10.1021/acs.jpca.5b05661.
[5] Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., &Mackerell, A. D. (2010). CHARMM general force field: A force field for drugâ€like molecules compatible with the CHARMM allâ€atom additive biological force fields. Journal of computational chemistry, 31(4), 671-690,
[6] Vergara-Jaque, A., Comer, J., Monsalve, L., GonzaÌlez-Nilo, F. D., & Sandoval, C. (2013). Computationally efficient methodology for atomic-level characterization of dendrimer–drug complexes: a comparison of amine-and acetyl-terminated PAMAM. The Journal of Physical Chemistry B, 117(22), 6801-6813.https://doi.org/10.1021/jp4000363.
[7] Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., &Kanehisa, M. (2008). Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13), i232-i240.https://doi.org/10.1093/bioinformatics/btn162.
[8] Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., &Kanehisa, M. (2008). Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13), i232-i240.https://doi.org/10.1093/bioinformatics/btn162.
[9] Blancafort, L., Cohen, B., Hare, P. M., Kohler, B., & Robb, M. A. (2005). Singlet excited-state dynamics of 5-fluorocytosine and cytosine: An experimental and computational study. The Journal of Physical Chemistry A, 109(20), 4431-4436.https://doi.org/10.1021/jp045614v.
[10] Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of medicinal chemistry, 43(20), 3714-3717.https://doi.org/10.1021/jm000942e.
[11] Stsiapura, V. I., Maskevich, A. A., Kuzmitsky, V. A., Turoverov, K. K., & Kuznetsova, I. M. (2007). Computational study of thioflavin T torsional relaxation in the excited state. The Journal of Physical Chemistry A, 111(22), 4829-4835.https://doi.org/10.1021/jp070590o.
[12] Improta, R., Barone, V., Scalmani, G., & Frisch, M. J. (2006). A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. The Journal of chemical physics, 125(5), 054103.https://doi.org/10.1063/1.2222364.
[13] Cramer, C. J., &Falvey, D. E. (1997). Computational prediction of a ground-state triplet arylnitrenium ion and a possible ground-state triplet silylene. Tetrahedron letters, 38(9), 1515-1518.https://doi.org/10.1016/S0040-4039(97)00126-3.
[14] prediction of drug response in breast cancer using integrative experimental/computational modeling(2009)
[15] Doemer, M., Guglielmi, M., Athri, P., Nagornova, N. S., Rizzo, T. R., Boyarkin, O. V.,&Rothlisberger, U. (2013). Assessing the performance of computational methods for the prediction of the ground state structure of a cyclic decapeptide. International Journal of Quantum Chemistry, 113(6), 808-814.https://doi.org/10.1002/qua.24085.
[16] Gopal, K. V., NAMBOORI, P. K., Premkumar, P., Gopakumar, D., & Narayanan, B. S. (2011). Insilico Modeling and Simulation of Magnetic Nanoparticles for the Biological Cell Isolation Technique. International Journal of Nanoscience, 10(01n02), 323-327.https://doi.org/10.1142/S0219581X11008022.
[17] Radhagayathri, K. U., NAMBOORI, P. K., Mohandas, V. P., Subeesh, T., Gopakumar, D., & Ramachandran, K. I. (2011). Computational Modeling and Simulation of Nanomolecular Switch for Alzheimer's disease (a Gene Silencing Technique). International Journal of Nanoscience, 10(01n02), 319-322.https://doi.org/10.1142/S0219581X11008010.
[18] Rana, D. K., Dhar, S., Sarkar, A., & Bhattacharya, S. C. (2011). Dual intramolecular hydrogen bond as a switch for inducing ground and excited state intramolecular double proton transfer in doxorubicin: an excitation wavelength dependence study. The Journal of Physical Chemistry A, 115(33), 9169-9179.https://doi.org/10.1021/jp204165j.
[19] Nair, B. B., Bhaskaran, V., &Arunjit, K. (2017). Structural designing of suppressors for autisms spectrum diseases using molecular dynamics sketch. International Journal of Drug Delivery, 8(4), 142-146.https://doi.org/10.5138/09750215.1973.
[20] Zhao, H. M., Pfister, J., Settels, V., Renz, M., Kaupp, M., Dehm, V. C., & Engels, B. (2009). Understanding ground-and excited-state properties of perylene tetracarboxylic acid bisimide crystals by means of quantum chemical computations. Journal of the American Chemical Society, 131(43), 15660-15668.https://doi.org/10.1021/ja902512e.
-
Downloads
-
How to Cite
Nair B.J, B., & K.V, V. (2018). Performance comparison prediction of energy states of atoms in doxorubin and docetaxel using various computational simulations for cancer treatment. International Journal of Engineering & Technology, 7(1.9), 157-161. https://doi.org/10.14419/ijet.v7i1.9.9754Received date: 2018-02-26
Accepted date: 2018-02-26
Published date: 2018-03-01