Face recognition based on stable uniform patterns

  • Authors

    • A. Mallikarjuna Reddy Anurag group of Instutions
    • V. Venkata Krishna
    • L. Sumalatha
    2018-04-28
    https://doi.org/10.14419/ijet.v7i2.9922
  • Expressions, Gradient, Histogram, Illumination, Pose, Robust, Uniform.
  • Abstract

    Face recognition (FR) is one of the challenging and active research fields of image processing, computer vision and biometrics with numerous proposed systems. We present a feature extraction method named “stable uniform local pattern (SULP)â€, a refined variant of ULBP operator, for robust face recognition. The SULP directly applied on gradient face images (in x and y directions) of a single image for capturing significant fundamental local texture patterns to build up a feature vector of a face image. Histogram sequences of SULP images of the two gradient images are finally concatenated to form the “stable uniform local pattern gradient (SULPG)†vector for the given image. The SULPG approach is experimented on Yale, ATT-ORL, FERET, CAS-PEAL and LFW face databases and the results are compared with the LBP model and various variants of LBP descriptor. The results indicate that the present descriptor is more powerful against a wide range of challenges, such as illumination, expression and pose variations and outperforms the state-of-the-art methods based on LBP.

  • References

    1. [1] S. Liao, A. K. Jain, and S. Z. Li, “Partial face recognition: Alignment free approach,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 5, pp. 1193–1205, May 2013. https://doi.org/10.1109/TPAMI.2012.191.

      [2] C. Ding, C. Xu, and D. Tao, “Multi-task pose-invariant face recognition,†IEEE Trans. Image Process., vol. 24, no. 3, pp. 980–993, Mar. 2015. https://doi.org/10.1109/TIP.2015.2390959.

      [3] R. Ibrahim and Z. M. Zin, ``Study of automated face recognition system for of_ce door access control application,'' in Proc. IEEE Int. Conf. Commun. Softw. Netw. May 2011, pp. 132-136.

      [4] W. Chongwen, L. Huan, and M. Ming, ``Face recognition technology based on identication card,'' in Proc. Int. Conf. Intell. Comput. Technol. Autom., 2012, pp. 173-176.

      [5] V. K. N. Kumar and B. Srinivasan, ``Enhancement of security and privacy in biometric passport inspection system using face, Fingerprint, and iris recognition,'' Int. J. Comput. Netw. Inf. Secur., vol. 4, no. 8, pp. 55-64, Aug. 2012.

      [6] M. Zhou, L. Liang, J. Sun, and Y. Wang, ``AAM based face tracking with temporal matching and face segmentation,'' in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 701_708. https://doi.org/10.1109/CVPR.2010.5540146.

      [7] Y. Zhang, W. Lin, B. Zhou, Z. Chen, B. Sheng, and J. Wu, ``Facial expression cloning with elastic and muscle models,'' J. Vis. Commun. Image Represent, vol. 25, no. 5, pp. 916_927, Jul. 2014.

      [8] I. Naseem, R. Togneri, and M. Bennamoun, “Linear regression for face recognition,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp. 2106–2112, Nov. 2010. https://doi.org/10.1109/TPAMI.2010.128.

      [9] E. Elhamifar and R. Vidal, “Block-sparse recovery via convex optimization,†IEEE Trans. Signal Process. vol. 60, no. 8, pp. 4094–4107, Aug. 2012. https://doi.org/10.1109/TSP.2012.2196694.

      [10] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closingthe gap to human-level performance in face verification,†in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 1701–1708. https://doi.org/10.1109/CVPR.2014.220.

      [11] M. Turk and A. Pentland, “Eigenfaces for recognition,†J. Cognit. Neurosci. vol. 3, no. 1, pp. 71–86, Jan. 1991. https://doi.org/10.1162/jocn.1991.3.1.71.

      [12] Z. Cao, Q. Yin, X. Tang, and J. Sun, “Face recognition with learning-based descriptor,†in Proc. Comput. Vis. Pattern Recog., 2010, pp. 2707–2714.

      [13] C. Chan, J. Kittler, and K. Messer, “Multi-scale local binary pattern histograms for face recognition,†in Proc. Int. Conf. Biometrics, 2007, pp. 809–818. https://doi.org/10.1007/978-3-540-74549-5_85.

      [14] S. ulHussain and B. Triggs, “Visual recognition using local quantized patterns,†in Proc. Eur. Conf. Comput. Vis., 2012, pp. 716–729.

      [15] S. Xie, S. Shan, X. Chen, and J. Chen, “Fusing local patterns ofGabor magnitude and phase for face recognition,†IEEE Trans.Image Process., vol. 19, no. 5, pp. 1349–1361, May 2010. https://doi.org/10.1109/TIP.2010.2041397.

      [16] Wang X, ZhangYMuX et al (2012) the face recognition algorithm based on improved LBP. OptoElectronEng 7:76–80.

      [17] Cament LA, Galdames FJ, Bowyer KW et al (2015) Face recognition under pose variation with localGabor features enhanced by active shape and statistical models. Pattern Recognit 48(11):3371–3384. https://doi.org/10.1016/j.patcog.2015.05.017.

      [18] T. Ojala, M. Pietik¨ainen, and T. Maenpaa, “Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987, Jul. 2002. https://doi.org/10.1109/TPAMI.2002.1017623.

      [19] T. Ojala, M. Pietik¨ainen, and D. Harwood, “A comparative study of texture measures with classification based on featured distribution,†Pattern Recog., vol. 29, no. 1, pp. 51–59, 1996. https://doi.org/10.1016/0031-3203(95)00067-4.

      [20] T. Ahonen, A. Hadid, and M. Pietik¨ainen, “Face description with local binary patterns: Application to face recognition,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041, Dec. 2006. https://doi.org/10.1109/TPAMI.2006.244.

      [21] X. Tan and B. Triggs, “Enhanced local texture feature sets for facerecognition under difficult lighting conditions,†in Proc. Anal. Model. Faces Gestures, 2007, pp. 168–182. https://doi.org/10.1007/978-3-540-76390-1_66.

      [22] S. Liao and A. C. S. Chung, “Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude,†in Proc. Asian Conf. Comput. Vis., 2007, pp. 672–679.

      [23] L. Zhang, R. Chu, S. Xiang, and S. Z. Li, “Face detection based onMulti-Block LBP representation,†in Proc. Int. Conf. Biometrics, 2007, pp. 11–18.

      [24] C. Shan, S. Gong, and P. W. McOwan, “Facial expression recognition based on local binary patterns: A comprehensive study,†Image Vis. Comput., vol. 27, no. 6, pp. 803–816, May 2009. https://doi.org/10.1016/j.imavis.2008.08.005.

      [25] T. Gritti, C. Shan, V. Jeanne, and R. Braspenning, “Local features based facial expression recognition with face registration errors,†presented at the IEEE Int. Conf. Autom. Face Gesture Recog, Amsterdam, The Netherlands, Sep. 2008. https://doi.org/10.1109/AFGR.2008.4813379

      [26] Z. Yang and H. Ai, “Demographic classification with local binary patterns,†in Proc. Int. Conf. Biometrics, 2007, pp. 464–473. https://doi.org/10.1007/978-3-540-74549-5_49.

      [27] J. Trefny, J. Matas (2010) Extended set of local binary pattern for rapid object detection, in: Proceedings of Computer Vision Winter Workshop.

      [28] LinlinShen Æ Li Bai, A review on Gabor wavelets for face recognition, Pattern Anal Applic (2006) 9:273–292. https://doi.org/10.1007/s10044-006-0033-y.

      [29] T. Ahonen, E. Rahtu, V. Ojansivu, and J. Heikkila, “Recognition ofblurred faces using local phase quantization,†in Proc. Int. Conf.Pattern Recog., 2008, pp. 1–4.

      [30] N.-S. Vu and A. Caplier, “Enhanced patterns of oriented edgemagnitudes for face recognition and image matching,†IEEETrans. Image Process. vol. 21, no. 3, pp. 1352–1365, Mar. 2012. https://doi.org/10.1109/TIP.2011.2166974.

      [31] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face description with local binary patterns: Application to face recognition,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp. 2037–2041, Dec. 2006 https://doi.org/10.1109/TPAMI.2006.244.

      [32] E. H. Land and J. J. McCann, “Lightness and retinex theory,†J. Opt. Soc. Amer., vol. 61, no. 1, pp. 1–11, 1971. https://doi.org/10.1364/JOSA.61.000001.

      [33] B. Julesz, “Textons, the elements of texture perception, and theirinteractions,†Nature, vol. 290, no. 5802, pp. 91–97, Mar. 1981. https://doi.org/10.1038/290091a0.

      [34] V. Vijaya Kumar, K. Srinivasa Reddy, V. Venkata Krishna “Face Recognition Using Prominent LBP Modelâ€, International Journal of Applied Engineering Research, Vol. 10, Iss. 2, 2015, pp. 4373-4384, ISSN: 0973-4562

      [35] J. Trefny and J. Matas, “Extended set of local binary patterns, for rapid object detection,†in Proc. Comput. Vis. Winter Workshop, 2010.

      [36] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, “The FERET evaluation methodology for face-recognition algorithms,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1090–1104, Oct. 2000. https://doi.org/10.1109/34.879790.

      [37] Wen Gao, Bo Cao, Shiguang Shan, Xilin Chen, Delong Zhou, Xiaohua Zhang, Debin Zhao. The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations. IEEE Trans. on System Man, and Cybernetics (Part A), vol.38, no.1, pp149-161. 2008.1

      [38] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A database for studying face recognition in unconstrained environments,†Dept. Comput. Sci., Univ. Massachusetts, Amherst, MA, USA, Tech. Rep. 07–49, Oct. 2007.

      [39] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many: Illumination cone models for face recognition under variable lighting and pose,†IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6, pp. 643–660, Jun. 2001 https://doi.org/10.1109/34.927464.

      [40] Samaria, Ferdinando S., and Andy C. Harter. "Parameterisation of a stochastic model for human face identification." In Applications ofComputer Vision, 1994, Proceedings of the Second IEEE Workshop on, pp. 138-142. IEEE, 1994.

      [41] N.-S. Vu and A. Caplier, “Face recognition with patterns of oriented edge magnitudes,†in Proc. ECCV, 2010, pp. 313–326. https://doi.org/10.1007/978-3-642-15549-9_23.

      [42] J. G. Daugman, “Uncertainty relation for resolution in space, spatialfrequency, and orientation optimized by two-dimensional visual cortical filters,†J. Opt. Soc. Amer. A, Opt., Image Sci., Vis., vol. 2, no. 7, pp. 1160–1169, 1985. https://doi.org/10.1364/JOSAA.2.001160.

  • Downloads

  • How to Cite

    Reddy, A. M., Krishna, V. V., & Sumalatha, L. (2018). Face recognition based on stable uniform patterns. International Journal of Engineering & Technology, 7(2), 626-634. https://doi.org/10.14419/ijet.v7i2.9922

    Received date: 2018-03-06

    Accepted date: 2018-04-10

    Published date: 2018-04-28