Drinking water contamination by heavy metals in different cities of Pakistan

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The most important concern in developing countries like Pakistan is the contamination of groundwater because of the heavy metals from industrial waste which are affecting the ecosystem and public health. Some heavy metals such as Arsenic (As), Chromium (Cr), Nickel (Ni), Copper (Cu), Iron (Fe), Lead (Pb) and Zinc (Zn) are mostly reported in different cities of Pakistan and their concentrations are also to be found above the permissible levels of WHO. For domestic purposes and irrigation, groundwater is the main source in Pakistan. Its quality is getting poor because of the untreated discharge from industries. In the country, water-borne diseases are spreading quickly because of the use of unfiltered environmentally contaminated water as well as a lack of awareness of environmental laws.



  • Keywords

    Contamination; Drinking water; Heavy metals; Pakistan.

  • References

      [1] Ahmad, T., Kahlown, M., Tahir, A., & Rashid, H. (2004). Arsenic an emerging issue experiences from Pakistan 30th WEDC international conference Vientiane Lao PDR. Public Health National Institute of Preventive and Social.

      [2] Alloway, B. (1990). Heavy metals in soil (pp. 1–330). London: Blackie Acadamic and Professional. https://doi.org/10.1180/minmag.1991.055.379.24.

      [3] Amin, N., Ayaz, M., Alam, S., & Gul, S. (2014). Heavy metals contamination through industrial effluent to irrigation water in Gadoon Amazai (Swabi) and Hayatabad (Peshawar) Pakistan. Journal of Scientific Research, 6(1), 111-124. https://doi.org/10.3329/jsr.v6i1.16336.

      [4] Azeem, H. A. (2009). Analysis of industrial waste water from Kot Lakhpat area (Lahore, Pakistan) by atomic absorption spectrometer. Biologia (Pakistan), 55(1&2), 35-41.

      [5] Boffetta, P. (2006). Human cancer from environmental pollutants: the epidemiological evidence. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 608(2), 157-162. https://doi.org/10.1016/j.mrgentox.2006.02.015.

      [6] Caso, F. (2010). Freshwater supply: Infobase Publishing. https://doi.org/10.5860/CHOICE.48-2091.

      [7] Çöl, M., Çöl, C., Soran, A., Sayli, B. S., & Oztürk, S. (1999). Arsenic-related Bowen's disease, palmar keratosis, and skin cancer. Environmental Health Perspectives, 107(8), 687-689. https://doi.org/10.1289/ehp.107-1566498.

      [8] De Kimpe, C. R., & Morel, J.-L. (2000). Urban soil management: a growing concern. Soil Science, 165(1), 31-40. https://doi.org/10.1097/00010694-200001000-00005.

      [9] Edition, F. (2011). Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-108. https://doi.org/10.1007/SpringerReference_30502.

      [10] Faiz, Y., Tufail, M., Javed, M. T., & Chaudhry, M. (2009). Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchemical Journal, 92(2), 186-192. https://doi.org/10.1016/j.microc.2009.03.009.

      [11] Field, R. W., & Withers, B. L. (2012). Occupational and environmental causes of lung cancer. Clinics in chest medicine, 33(4), 681-703. https://doi.org/10.1016/j.ccm.2012.07.001.

      [12] Ghafoor, A., Rauf, A., Arif, M., & Muzaffar, W. (1994). Chemical composition of effluents from different industries of the Faisalabad city. Pak. J. Agri. Sci, 31(4).

      [13] Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. CRC Press, Taylor and Francis Group. https://doi.org/10.1017/S0014479711000743.

      [14] Khan, R., Israili, S., Ahmad, H., & Mohan, A. (2005). Heavy metal pollution assessment in surface water bodies and its suitability for irrigation around the Neyevli lignite mines and associated industrial complex, Tamil Nadu, India. Mine Water and the Environment, 24(3), 155-161. https://doi.org/10.1007/s10230-005-0087-x.

      [15] Khan, S., Khan, A. M., & Khan, M. N. (2002). Investigation of pollutants load in waste water of Hayatabad Industrial Estate, Peshawar, Pakistan. Pak J Appl Sci, 2(4), 457-461. https://doi.org/10.3923/jas.2002.457.461.

      [16] Krishna, A., & Govil, P. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124(1-3), 263-275. https://doi.org/10.1007/s10661-006-9224-7.

      [17] Lone, M., Saleem, S., Mahmood, T., Saifullah, K., & Hussain, G. (2003). Heavy metal contents of vegetables irrigated by sewage/tubewell water. International journal of Agriculture and Biology, 5(4), 533-535.

      [18] Manahan, S. (2017). Environmental chemistry: CRC press. https://doi.org/10.1201/9781315160474.

      [19] Manzoor, S., Shah, M. H., Shaheen, N., Khalique, A., & Jaffar, M. (2006). Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater. Journal of hazardous materials, 137(1), 31-37. https://doi.org/10.1016/j.jhazmat.2006.01.077.

      [20] Markus, J. A., & McBratney, A. B. (1996). An urban soil study: heavy metals in Glebe, Australia. Soil Research, 34(3), 453-465. https://doi.org/10.1071/SR9960453.

      [21] Meyers, L. D., Hellwig, J. P., & Otten, J. J. (2006). Dietary reference intakes: the essential guide to nutrient requirements: National Academies Press. https://doi.org/10.17226/11537.

      [22] Morales, K. H., Ryan, L., Kuo, T.-l., Wu, M.-m., & Chen, C.-j. (2000). Risk of internal cancers from arsenic in drinking water. Environ Health Perspect 108: 655–661. https://doi.org/10.1289/ehp.00108655.

      [23] Murray, K. S., Rogers, D. T., & Kaufman, M. M. (2006). Dissolved heavy metals in shallow ground water in a southeastern michigan urban watershed . JAWRA Journal of the American Water Resources Association, 42(3), 777-792. https://doi.org/10.1111/j.1752-1688.2006.tb04492.x.

      [24] Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N., & Tsatsakis, A. M. (2005). Lead toxicity update. A brief review. Medical science monitor, 11(10), RA329-RA336.

      [25] Peter, A. J., & Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environment international, 31(4), 493-501. https://doi.org/10.1016/j.envint.2004.09.003.

      [26] Pillay, A. E., Williams, J., El Mardi, M., Al-Lawati, S., Al-Hadabbi, M., & Al-Hamdi, A. (2003). Risk assessment of chromium and arsenic in date palm leaves used as livestock feed. Environment international, 29(5), 541-545. https://doi.org/10.1016/S0160-4120(03)00011-4.

      [27] Qadir, A., Malik, R. N., & Husain, S. Z. (2008). Spatio-temporal variations in water quality of Nullah Aik-tributary of the river Chenab, Pakistan. Environmental Monitoring and Assessment, 140(1-3), 43-59. https://doi.org/10.1007/s10661-007-9846-4.

      [28] Rehman, W., Zeb, A., Noor, N., & Nawaz, M. (2008). Heavy metal pollution assessment in various industries of Pakistan. Environmental Geology, 55(2), 353-358. https://doi.org/10.1007/s00254-007-0980-7.

      [29] Resh, V. H. (2007). Multinational, freshwater biomonitoring programs in the developing world: lessons learned from African and Southeast Asian river surveys. Environmental Management, 39(5), 737-748. https://doi.org/10.1007/s00267-006-0151-8.

      [30] Roy, S.-S., & Ghosh, S. (2018). Effect of Toxic Heavy Metal Containing Industrial Effluent on Selected Life History Traits, Adult Morphology and Global Protein Expression Pattern of Drosophila melanogaster. https://doi.org/10.1007/s12595-017-0210-6.

      [31] Samina, J., Jaffar, M., & Shah, M. (2004). Physico-chemical profiling of ground water along Hazara strip, Pakistan. Journal of the Chemical Society of Pakistan, 26(3), 288-292.

      [32] Saqib, A. N. S., Waseem, A., Khan, A. F., Mahmood, Q., Khan, A., Habib, A., & Khan, A. R. (2013). Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecological Engineering, 51, 88-94. https://doi.org/10.1016/j.ecoleng.2012.12.063.

      [33] Shah, M. H., & Shaheen, N. (2007). Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan. Journal of hazardous materials, 147(3), 759-767. https://doi.org/10.1016/j.jhazmat.2007.01.075.

      [34] Shah, M. H., Shaheen, N., Jaffar, M., & Saqib, M. (2004). Distribution of lead in relation to size of airborne particulate matter in Islamabad, Pakistan. Journal of environmental management, 70(2), 95-100. https://doi.org/10.1016/j.jenvman.2003.10.004.

      [35] Solomons, N. W., & Ruz, M. (1998). Trace element requirements in humans: an update. The Journal of Trace Elements in Experimental Medicine: The Official Publication of the International Society for Trace Element Research in Humans, 11(2‐3), 177-195. https://doi.org/10.1002/(SICI)1520-670X(1998)11:2/3<177::AID-JTRA9>3.0.CO;2-5.

      [36] Tariq, M., Ali, M., & Shah, Z. (2006). Characteristics of industrial effluents and their possible impacts on quality of underground water. Soil Environ, 25(1), 64-69.

      [37] Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Journal of the Academy of Nutrition and Dietetics, 101(3), 294. https://doi.org/10.17226/10026.

      [38] Uauy, R., Olivares, M., & Gonzalez, M. (1998). Essentiality of copper in humans. The American journal of clinical nutrition, 67(5), 952S-959S. https://doi.org/10.1093/ajcn/67.5.952S.

      [39] Waseem, A., Arshad, J., Iqbal, F., Sajjad, A., Mehmood, Z., & Murtaza, G. (2014). Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed research international, 2014. https://doi.org/10.1155/2014/813206.




Article ID: 31529
DOI: 10.14419/ijac.v9i1.31529

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.