Lactic acid bacteria and identification with PCR-DGGE
-
2017-04-05 https://doi.org/10.14419/ijbr.v5i1.7392 -
Lactic Acid Bacteria, Molecular Identification, PCR-DGGE. -
Abstract
Lactic acid bacteria (LAB) are an important group in the industrially using microorganisms. The first pure cultures of bacteria was "Bacterium lactis" (probably Lactococcus lactis), obtained in 1873 by J. Lister. LAB are Gram-positive, non motile, non spore-forming, except Sporolactobacillus inulinus, catalase negative, microaerophilic or anaerobic microorganisms. LAB can be found in milk and dairy products, plants and human and animal intestinal mucosa. LAB have low Guanine and Cytosine (G+C) ratio.
The industrial applications of lactic acid bacteria is considered, it is emphasized that reliable typing methods in strain levels are getting important about both study on cultures used in functional foods and determining the performance of LAB starter cultures. Denaturing Gradient Gel Electrophoresis (DGGE) is the most common technique in molecular fingerprinting culture-independent techniques. The technique is based on the separation of the same length but having different sequences of the Polymerase Chain Reaction (PCR) products.Â
-
References
[1] Akcelik M (2000) Gıda Mikrobiyolojisi ve Uygulamaları, Genişletilmiş 2. Baskı, Ankara, Sim Matbaacılık, pp. 357-363.
[2] Ampe F, Ben Omar N, Moizan C, Wacher C & Guyot, JP (1999) Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations, Appl Environ Microbiol 659, 5464– 5473.
[3] Axelsson L (2004) Lactic Acid Bacteria: Classification and Physiology. In: Lactic Acid Bacteria Microbiological and Functional Aspects Revised and Expanded. Eds: Salminen S, von Wright A, Ouwehand A, 3rd ed. New York, Basel: Marcel Dekker, pp: 20-87. https://doi.org/10.1201/9780824752033.ch1.
[4] Cocolin L, Diez A, Urso R, Rantsiou K, Comi G, Bergmaier I & Beimfohr C (2007) Optimization of conditions for profiling bacterial populations in food by cultureindependent methods. International Journal of Food Microbiology 120, 100–109. https://doi.org/10.1016/j.ijfoodmicro.2007.06.015.
[5] Cocolin L, Alessandria V, Dolci P, Gorra R & Rantsiou K (2013) Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation. International Journal of Food Microbiology 167, 29–43. https://doi.org/10.1016/j.ijfoodmicro.2013.05.008.
[6] Con AH & Gokalp HY (2000) Laktik Asit Bakterilerinin Antimikrobiyel Metabolitleri ve Etki Şekilleri. Türk Mikrobiyoloji Cemiyeti Dergisi 30(3-4), 180-190.
[7] Del Mar Lleò M, Pierobon S, Tafi MC, Signoretto C & Canepari P (2000) mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalisviable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol 66, 4564–4567. https://doi.org/10.1128/AEM.66.10.4564-4567.2000.
[8] Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. Journal of Microbiological Methods 56, 297–314. https://doi.org/10.1016/j.mimet.2003.11.006.
[9] Erkmen O (2011) Gıda Mikrobiyolojisi, 3.Baskı, Ankara, Efil Yayınevi, pp. 411-412.
[10] Fisher SG & Lerman LS (1983) DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80, 1579– 1583. https://doi.org/10.1073/pnas.80.6.1579.
[11] Fleet GH (1999) Microorganisms in food ecosystems. Int J Food Microbiol 50, 101–117. https://doi.org/10.1016/S0168-1605(99)00080-X.
[12] Fogel GB, Collins CR, Li J & Brunk CF (1999) Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microbial Ecology 38, 93–113. https://doi.org/10.1007/s002489900162.
[13] Fox PF, McSweeney PLH, Cogan TM & Guinee TP (2004) Cheese: Chemistry, Physics and Microbiology. vol 1, 3rd edition, London, Elsevier Ltd.
[14] Gaggia F, Di Gioia D, Baffoni L & Biavati B (2011) the role of protective and probiotic cultures in food and feed and their impact on food safety. Trends in Food Science and Technology 22, 58–66. https://doi.org/10.1016/j.tifs.2011.03.003.
[15] Gest H (2004) the discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes and Records of the Royal Society of London 58, 187–201. https://doi.org/10.1098/rsnr.2004.0055.
[16] Kacmaz N, 2009. PCR-DGGE tekniği ile kefir mikroflorasındaki laktik asit bakterilerinin tanımlanması. Erciyes University, Graduate School of Natural Scıences, Master thesis.
[17] Kesmen Z, Yetiman AE, Gulluce A, Kacmaz N, Sagdic O, Cetin B, Adiguzel A, Sahin F & Yetim H (2012) Combination of culture-dependent and culture-independent molecular methods for the determination of lactic microbiota in sucuk. International Journal of Food Microbiology 153, 428-435. https://doi.org/10.1016/j.ijfoodmicro.2011.12.008.
[18] Kıran F (2006) Hücre duvarı protein profilleri ve pilazmid içeriklerine göre laktik asit bakterilerinin moleküler tanısı. Ankara University, Graduate School of Natural Scıences, Master thesis.
[19] Kıran F & Osmanagaoglu O (2011) Laktik asit bakterilerinin (LAB) identifikasyonunda /tiplendirmesinde kullanılan moleküler yöntemler. Erciyes University Journal of Institute of Science and Technology 27(1), 62-74.
[20] Ludwig W, Neumaier J, Klugbayer N, Brockmann E, Roller C, Jilg S, Reetz K, Schachtner I, Ludwigsen A, Wallner G, Bachleitner M, Fischer U & Scheleifer KH (1993) Phylogenetic relationships of bacteria. Antonie Van Leuwenhoek 64, 285-304. https://doi.org/10.1007/BF00873088.
[21] Ma J, Kong J & Ji M (2009) Detection of the lactic acid bacteria in commercial yoghurt by PCR-denaturing gradient gel electrophoresis. Chinese Journal of Applied and Environmental Biology 15, 534–539.
[22] Muyzer G, De Waal EC & Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695– 700.
[23] Myers RM, Maniatis T & Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155, 501–527. https://doi.org/10.1016/0076-6879(87)55033-9.
[24] Prajapati JB & Nair BM (2003) the history of fermented foods. In: Fermented Functional Foods. Ed: Farnworth ER, 2nd ed. Boca Raton, New York, London, Washington DC: CRC Press, pp. 1–25.
[25] Rebecchi A, Crivori S, Sarra PG & Cocconcelli PS (1998) Physiological and molecular techniques for the study of bacterial community development in sausage fermentation. J of Appl Microbiol 84, 1043-1049. https://doi.org/10.1046/j.1365-2672.1998.00442.x.
[26] Roszak DB & Colwell RP (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51, 365–379.
[27] Rychlik T, Szwengiel A, Bednarek M, Arcuri E, Montet D, Mayo B, Nowak J & Czarnecki Z (2017) Application of the PCR-DGGE technique to the fungal community of traditional Wielkopolska fried ripened curd cheese to determine its PGI authenticity. Food Control 73, 1074-1081. https://doi.org/10.1016/j.foodcont.2016.10.024.
[28] Sofu A and Ekinci FY (2016) Bacterial diversity dynamics of traditional Turkish ezine cheese as evaluated by PCR-DGGE and SSCP analysis. International Journal of Dairy Technology 69(4), 592-600. https://doi.org/10.1111/1471-0307.12311.
[29] Wyman J (1862) Spontaneous generation. British Medical Journal 2, 311–312. https://doi.org/10.1136/bmj.2.90.311.
-
Downloads
-
How to Cite
BİÇER, Y., & UÇAR, G. (2017). Lactic acid bacteria and identification with PCR-DGGE. International Journal of Biological Research, 5(1), 22-25. https://doi.org/10.14419/ijbr.v5i1.7392Received date: 2017-02-21
Accepted date: 2017-03-26
Published date: 2017-04-05