A comprehensive review of etiology, pathophysiologyepidemiology, and management of hair loss and its correlation with COVID-19

  • Authors

    • Faraz Changizi Shahid beheshti university of medical sciences
    • Maryam Abdolmaleki Shahid beheshti university of medical sciences
    • Mina Farjam Shahid beheshti university of medical sciences
    • Laya Ohadi Shahid beheshti university of medical sciences
    2024-08-28
    https://doi.org/10.14419/ax1s7206
  • Hair Loss; COVID-19; Pathophysiology; Management.
  • Abstract

    This paper explores the connection between COVID-19 and hair loss, emphasizing its emotional impact. Beyond respiratory effects, the virus causes various skin symptoms, including hair loss (telogen effluvium) in up to one-fifth of patients. The study reviews disruptions in the hair growth cycle induced by COVID-19, suggesting a multifactorial mechanism involving proinflammatory cytokines, the ADE phenomenon, and coagulation cascade activation. Recognizing the psychological impact, the paper uses a comprehensive research methodology to explore the correlation between hair loss and COVID-19. Recommendations for managing COVID-19-induced hair loss include counseling, dietary adjustments, and treatment options like minoxidil and corticosteroids. The study highlights the proactive role of healthcare professionals in addressing COVID-19-related hair loss to enhance patient satisfaction and overall quality of life.

  • References

    1. Hui, D.S., et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel corona-virus outbreak in Wuhan, China. Int J Infect Dis, 2020. 91: p. 264-266. https://doi.org/10.1016/j.ijid.2020.01.009.
    2. Ohyama, M., K. Matsudo, and T. Fujita, Management of hair loss after severe acute respiratory syndrome coronavirus 2 infection: In-sight into the pathophysiology with implication for better management. J Dermatol, 2022. 49(10): p. 939-947. https://doi.org/10.1111/1346-8138.16475.
    3. Bandyopadhyay, D., et al., COVID-19 Pandemic: Cardiovascular Complications and Future Implications. Am J Cardiovasc Drugs, 2020. 20(4): p. 311-324. https://doi.org/10.1007/s40256-020-00420-2.
    4. Gottlieb, M. and B. Long, Dermatologic manifestations and complications of COVID-19. Am J Emerg Med, 2020. 38(9): p. 1715-1721. https://doi.org/10.1016/j.ajem.2020.06.011.
    5. Lopez-Leon, S., et al., More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv, 2021. https://doi.org/10.21203/rs.3.rs-266574/v1.
    6. Baig, A.M., Chronic COVID syndrome: Need for an appropriate medical terminology for long-COVID and COVID long-haulers. J Med Virol, 2021. 93(5): p. 2555-2556. https://doi.org/10.1002/jmv.26624.
    7. Rubin, R., As Their Numbers Grow, COVID-19 "Long Haulers" Stump Experts. JAMA, 2020. 324(14): p. 1381-1383. https://doi.org/10.1001/jama.2020.17709.
    8. Huang, C., et al., 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet, 2021. 397(10270): p. 220-232. https://doi.org/10.1016/S0140-6736(20)32656-8.
    9. Korompoki, E., et al., Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J Infect, 2021. 83(1): p. 1-16. https://doi.org/10.1016/j.jinf.2021.05.004.
    10. Czech, T., S. Sugihara, and Y. Nishimura, Characteristics of hair loss after COVID-19: A systematic scoping review. J Cosmet Derma-tol, 2022. 21(9): p. 3655-3662. https://doi.org/10.1111/jocd.15218.
    11. Fagan, N., et al., Shedding light on therapeutics in alopecia and their relevance to COVID-19. Clin Dermatol, 2021. 39(1): p. 76-83. https://doi.org/10.1016/j.clindermatol.2020.12.015.
    12. Gentile, P. and S. Garcovich, Systematic review: Impact of stem cells-based therapy, and platelet-rich plasma in hair loss and telogen effluvium related to COVID-19. Regen Ther, 2023. 24: p. 267-273. https://doi.org/10.1016/j.reth.2023.07.001.
    13. Torres, F. and A. Tosti, Female pattern alopecia and telogen effluvium: figuring out diffuse alopecia. Semin Cutan Med Surg, 2015. 34(2): p. 67-71. https://doi.org/10.12788/j.sder.2015.0142.
    14. Malkud, S., Telogen Effluvium: A Review. J Clin Diagn Res, 2015. 9(9): p. WE01-3. https://doi.org/10.7860/JCDR/2015/15219.6492.
    15. Sharquie, K.E. and R.I. Jabbar, COVID-19 infection is a major cause of acute telogen effluvium. Ir J Med Sci, 2022. 191(4): p. 1677-1681. https://doi.org/10.1007/s11845-021-02754-5.
    16. Asghar, F., et al., Telogen Effluvium: A Review of the Literature. Cureus, 2020. 12(5): p. e8320. https://doi.org/10.7759/cureus.8320.
    17. Gentile, P., Hair Loss and Telogen Effluvium Related to COVID-19: The Potential Implication of Adipose-Derived Mesenchymal Stem Cells and Platelet-Rich Plasma as Regenerative Strategies. Int J Mol Sci, 2022. 23(16). https://doi.org/10.3390/ijms23169116.
    18. Jafferany, M. and K. Franca, Psychodermatology: Basics Concepts. Acta Derm Venereol, 2016. 96(217): p. 35-7.
    19. Garcovich, S., et al., Mass quarantine measures in the time of COVID-19 pandemic: psychosocial implications for chronic skin condi-tions and a call for qualitative studies. J Eur Acad Dermatol Venereol, 2020. 34(7): p. e293-e294. https://doi.org/10.1111/jdv.16535.
    20. Al Aboud, A.M. and P.M. Zito, Alopecia, in StatPearls. 2023: Treasure Island (FL).
    21. Tamashunas, N.L. and W.F. Bergfeld, Male and female pattern hair loss: Treatable and worth treating. Cleve Clin J Med, 2021. 88(3): p. 173-182. https://doi.org/10.3949/ccjm.88a.20014.
    22. Bertoli, M.J., et al., Female pattern hair loss: A comprehensive review. Dermatol Ther, 2020. 33(6): p. e14055. https://doi.org/10.1111/dth.14055.
    23. Bernardez, C., A.M. Molina-Ruiz, and L. Requena, Histologic features of alopecias-part I: nonscarring alopecias. Actas Dermosifiliogr, 2015. 106(3): p. 158-67. https://doi.org/10.1016/j.ad.2014.07.006.
    24. Phillips, T.G., W.P. Slomiany, and R. Allison, Hair Loss: Common Causes and Treatment. Am Fam Physician, 2017. 96(6): p. 371-378.
    25. 25. Wolff, H., T.W. Fischer, and U. Blume-Peytavi, The Diagnosis and Treatment of Hair and Scalp Diseases. Dtsch Arztebl Int, 2016. 113(21): p. 377-86. https://doi.org/10.3238/arztebl.2016.0377.
    26. Xu, L., K.X. Liu, and M.M. Senna, A Practical Approach to the Diagnosis and Management of Hair Loss in Children and Adolescents. Front Med (Lausanne), 2017. 4: p. 112. https://doi.org/10.3389/fmed.2017.00112.
    27. Lintzeri, D.A., et al., Alopecia areata - Current understanding and management. J Dtsch Dermatol Ges, 2022. 20(1): p. 59-90. https://doi.org/10.1111/ddg.14689.
    28. Olsen, E.A., et al., Summary of North American Hair Research Society (NAHRS)-sponsored Workshop on Cicatricial Alopecia, Duke University Medical Center, February 10 and 11, 2001. J Am Acad Dermatol, 2003. 48(1): p. 103-10. https://doi.org/10.1067/mjd.2003.68.
    29. Fanti, P.A., et al., Cicatricial alopecia. G Ital Dermatol Venereol, 2018. 153(2): p. 230-242. https://doi.org/10.23736/S0392-0488.18.05889-3.
    30. Alessandrini, A., et al., Common causes of hair loss - clinical manifestations, trichoscopy and therapy. J Eur Acad Dermatol Venereol, 2021. 35(3): p. 629-640. https://doi.org/10.1111/jdv.17079.
    31. Rossi, A., et al., Italian Guidelines in diagnosis and treatment of alopecia areata. G Ital Dermatol Venereol, 2019. 154(6): p. 609-623. https://doi.org/10.23736/S0392-0488.19.06458-7.
    32. Strazzulla, L.C., et al., Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol, 2018. 78(1): p. 1-12. https://doi.org/10.1016/j.jaad.2017.04.1141.
    33. Vano-Galvan, S., et al., Frequency of the Types of Alopecia at Twenty-Two Specialist Hair Clinics: A Multicenter Study. Skin Append-age Disord, 2019. 5(5): p. 309-315. https://doi.org/10.1159/000496708.
    34. Shrivastava, S.B., Diffuse hair loss in an adult female: approach to diagnosis and management. Indian J Dermatol Venereol Leprol, 2009. 75(1): p. 20-7; quiz 27-8. https://doi.org/10.4103/0378-6323.45215.
    35. Miteva, M. and A. Tosti, Hair and scalp dermatoscopy. J Am Acad Dermatol, 2012. 67(5): p. 1040-8. https://doi.org/10.1016/j.jaad.2012.02.013.
    36. Vano-Galvan, S., et al., Updated diagnostic criteria for frontal fibrosing alopecia. J Am Acad Dermatol, 2018. 78(1): p. e21-e22. https://doi.org/10.1016/j.jaad.2017.08.062.
    37. Tolkachjov, S.N., et al., Reply to: "Updated diagnostic criteria for frontal fibrosing alopecia". J Am Acad Dermatol, 2018. 78(1): p. e23-e24. https://doi.org/10.1016/j.jaad.2017.09.027.
    38. Naeini, F.F., M. Saber, and G. Faghihi, Lichen planopilaris: A review of evaluation methods. Indian J Dermatol Venereol Leprol, 2021. 87(3): p. 442-445. https://doi.org/10.25259/IJDVL_775_18.
    39. Aiyegbusi, O.L., et al., Symptoms, complications and management of long COVID: a review. J R Soc Med, 2021. 114(9): p. 428-442. https://doi.org/10.1177/01410768211032850.
    40. McMahon, D.E., et al., Long COVID in the skin: a registry analysis of COVID-19 dermatological duration. Lancet Infect Dis, 2021. 21(3): p. 313-314. https://doi.org/10.1016/S1473-3099(20)30986-5.
    41. Muller Ramos, P., M. Ianhez, and H. Amante Miot, Alopecia and grey hair are associated with COVID-19 Severity. Exp Dermatol, 2020. 29(12): p. 1250-1252. https://doi.org/10.1111/exd.14220.
    42. Kim, J., et al., Lack of Evidence of COVID-19 Being a Risk Factor of Alopecia Areata: Results of a National Cohort Study in South Ko-rea. Front Med (Lausanne), 2021. 8: p. 758069. https://doi.org/10.3389/fmed.2021.758069.
    43. Abrantes, T.F., et al., Time of onset and duration of post-COVID-19 acute telogen effluvium. J Am Acad Dermatol, 2021. 85(4): p. 975-976. https://doi.org/10.1016/j.jaad.2021.07.021.
    44. Seyfi, S., et al., Prevalence of telogen effluvium hair loss in COVID-19 patients and its relationship with disease severity. J Med Life, 2022. 15(5): p. 631-634. https://doi.org/10.25122/jml-2021-0380.
    45. Hussain, N., et al., A systematic review of acute telogen effluvium, a harrowing post-COVID-19 manifestation. J Med Virol, 2022. 94(4): p. 1391-1401. https://doi.org/10.1002/jmv.27534.
    46. Nguyen, B. and A. Tosti, Alopecia in patients with COVID-19: A systematic review and meta-analysis. JAAD Int, 2022. 7: p. 67-77. https://doi.org/10.1016/j.jdin.2022.02.006.
    47. Berbert Ferreira, S., et al., Rapidly progressive alopecia areata totalis in a COVID-19 patient, unresponsive to tofacitinib. J Eur Acad Dermatol Venereol, 2021. 35(7): p. e411-e412. https://doi.org/10.1111/jdv.17170.
    48. Christensen, R.E. and M. Jafferany, Association between alopecia areata and COVID-19: A systematic review. JAAD Int, 2022. 7: p. 57-61. https://doi.org/10.1016/j.jdin.2022.02.002.
    49. Rinaldi, F., et al., Italian Survey for the Evaluation of the Effects of Coronavirus Disease 2019 (COVID-19) Pandemic on Alopecia Ar-eata Recurrence. Dermatol Ther (Heidelb), 2021. 11(2): p. 339-345. https://doi.org/10.1007/s13555-021-00498-9.
    50. Rudnicka, L., et al., Mild-to-moderate COVID-19 is not associated with worsening of alopecia areata: A retrospective analysis of 32 patients. J Am Acad Dermatol, 2021. 85(3): p. 723-725. https://doi.org/10.1016/j.jaad.2021.05.020.
    51. Rossi, A., et al., Telogen Effluvium after SARS-CoV-2 Infection: A Series of Cases and Possible Pathogenetic Mechanisms. Skin Ap-pendage Disord, 2021. 21(5): p. 1-5. https://doi.org/10.1159/000517223.
    52. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibi-tor. Cell, 2020. 181(2): p. 271-280 e8. https://doi.org/10.1016/j.cell.2020.02.052.
    53. Ito, T., et al., Interferon-gamma is a potent inducer of catagen-like changes in cultured human anagen hair follicles. Br J Dermatol, 2005. 152(4): p. 623-31. https://doi.org/10.1111/j.1365-2133.2005.06453.x.
    54. Mahe, Y.F., et al., Androgenetic alopecia and microinflammation. Int J Dermatol, 2000. 39(8): p. 576-84. https://doi.org/10.1046/j.1365-4362.2000.00612.x.
    55. Grifoni, E., et al., Interleukin-6 as prognosticator in patients with COVID-19. J Infect, 2020. 81(3): p. 452-482. https://doi.org/10.1016/j.jinf.2020.06.008.
    56. Kwack, M.H., et al., Dihydrotestosterone-inducible IL-6 inhibits elongation of human hair shafts by suppressing matrix cell prolifera-tion and promotes regression of hair follicles in mice. J Invest Dermatol, 2012. 132(1): p. 43-9. https://doi.org/10.1038/jid.2011.274.
    57. Mandt, N., et al., Interleukin-4 induces apoptosis in cultured human follicular keratinocytes, but not in dermal papilla cells. Eur J Der-matol, 2002. 12(5): p. 432-8.
    58. Koc Yildirim, S., E. Erbagci, and N. Demirel Ogut, Evaluation of patients with telogen effluvium during the pandemic: May the mono-cytes be responsible for post COVID-19 telogen effluvium? J Cosmet Dermatol, 2022. 21(5): p. 1809-1815. https://doi.org/10.1111/jocd.14883.
    59. Hernandez Arroyo, J., J.S. Izquierdo-Condoy, and E. Ortiz-Prado, A Case Series and Literature Review of Telogen Effluvium and Alo-pecia Universalis after the Administration of a Heterologous COVID-19 Vaccine Scheme. Vaccines (Basel), 2023. 11(2). https://doi.org/10.3390/vaccines11020444.
    60. Lee, S., et al., Hair Regrowth Outcomes of Contact Immunotherapy for Patients With Alopecia Areata: A Systematic Review and Meta-analysis. JAMA Dermatol, 2018. 154(10): p. 1145-1151. https://doi.org/10.1001/jamadermatol.2018.2312.
    61. Ulrich, H., M.M. Pillat, and A. Tarnok, Dengue Fever, COVID-19 (SARS-CoV-2), and Antibody-Dependent Enhancement (ADE): A Perspective. Cytometry A, 2020. 97(7): p. 662-667. https://doi.org/10.1002/cyto.a.24047.
    62. Karthik, K., et al., Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19. Hum Vaccin Immunother, 2020. 16(12): p. 3055-3060. https://doi.org/10.1080/21645515.2020.1796425.
    63. Olds, H., et al., Telogen effluvium associated with COVID-19 infection. Dermatol Ther, 2021. 34(2): p. e14761. https://doi.org/10.1111/dth.14761.
    64. Jose, R.J. and A. Manuel, COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med, 2020. 8(6): p. e46-e47. https://doi.org/10.1016/S2213-2600(20)30216-2.
    65. Tufan, A., A. Avanoglu Guler, and M. Matucci-Cerinic, COVID-19, immune system response, hyperinflammation and repurposing an-tirheumatic drugs. Turk J Med Sci, 2020. 50(SI-1): p. 620-632. https://doi.org/10.3906/sag-2004-168.
    66. Inamadar, A.C., Covid Induced Telogen Effluvium (CITE): An Insight. Indian Dermatol Online J, 2022. 13(4): p. 445-448. https://doi.org/10.4103/idoj.idoj_139_22.
    67. Rizzetto, G., et al., Telogen effluvium related to post severe Sars-Cov-2 infection: Clinical aspects and our management experience. Dermatol Ther, 2021. 34(1): p. e14547. https://doi.org/10.1111/dth.14547.
    68. Abdel Aziz, A.M., S. Sh Hamed, and M.A. Gaballah, Possible Relationship between Chronic Telogen Effluvium and Changes in Lead, Cadmium, Zinc, and Iron Total Blood Levels in Females: A Case-Control Study. Int J Trichology, 2015. 7(3): p. 100-6. https://doi.org/10.4103/0974-7753.167465.
    69. Cline, A., et al., A surge in the incidence of telogen effluvium in minority predominant communities heavily impacted by COVID-19. J Am Acad Dermatol, 2021. 84(3): p. 773-775. https://doi.org/10.1016/j.jaad.2020.11.032.
    70. Grover, C. and A. Khurana, Telogen effluvium. Indian J Dermatol Venereol Leprol, 2013. 79(5): p. 591-603. https://doi.org/10.4103/0378-6323.116731.
    71. Feingold, J.H., et al., Psychological Impact of the COVID-19 Pandemic on Frontline Health Care Workers During the Pandemic Surge in New York City. Chronic Stress (Thousand Oaks), 2021. 5: p. 2470547020977891. https://doi.org/10.1177/2470547020977891.
    72. Turna, J., et al., Anxiety, depression and stress during the COVID-19 pandemic: Results from a cross-sectional survey. J Psychiatr Res, 2021. 137: p. 96-103. https://doi.org/10.1016/j.jpsychires.2021.02.059.
    73. Mysore, V., et al., Expert consensus on the management of Telogen Effluvium in India. Int J Trichology, 2019. 11(3): p. 107-112. https://doi.org/10.4103/ijt.ijt_23_19.
    74. Hughes, E.C. and D. Saleh, Telogen Effluvium, in StatPearls. 2023: Treasure Island (FL).
    75. Cheung, E.J., J.R. Sink, and J.C. English Iii, Vitamin and Mineral Deficiencies in Patients With Telogen Effluvium: A Retrospective Cross-Sectional Study. J Drugs Dermatol, 2016. 15(10): p. 1235-1237.
    76. Gerkowicz, A., et al., The Role of Vitamin D in Non-Scarring Alopecia. Int J Mol Sci, 2017. 18(12). https://doi.org/10.3390/ijms18122653.
    77. Sattar, F., et al., Efficacy of Oral Vitamin D(3) Therapy in Patients Suffering from Diffuse Hair Loss (Telogen Effluvium). J Nutr Sci Vitaminol (Tokyo), 2021. 67(1): p. 68-71. https://doi.org/10.3177/jnsv.67.68.
    78. Popescu, M.N., et al., Complementary Strategies to Promote Hair Regrowth in Post-COVID-19 Telogen Effluvium. Clin Cosmet Inves-tig Dermatol, 2022. 15: p. 735-743. https://doi.org/10.2147/CCID.S359052.
    79. Ong, S.W.Q., K.H.X. Ong, and S.J. Lee, COVID-19-induced Scalp Alopecia Treated Effectively with Stem Cell Serum. Plast Reconstr Surg Glob Open, 2022. 10(6): p. e4423. https://doi.org/10.1097/GOX.0000000000004423.
    80. Khattab, F.M., A. Rady, and S.A. Khashaba, Recent modalities in treatment of telogen effluvium: Comparative study. Dermatol Ther, 2022. 35(10): p. e15720. https://doi.org/10.1111/dth.15720.
    81. Perera, E. and R. Sinclair, Treatment of chronic telogen effluvium with oral minoxidil: A retrospective study. F1000Res, 2017. 6: p. 1650. https://doi.org/10.12688/f1000research.11775.1.
    82. El-Dawla, R.E., M. Abdelhaleem, and A. Abdelhamed, Evaluation of the safety and efficacy of platelet-rich plasma in the treatment of female patients with chronic telogen effluvium: A randomised, controlled, double-blind, pilot clinical trial. Indian J Dermatol Venereol Leprol, 2023. 89(2): p. 195-203. https://doi.org/10.25259/IJDVL_1011_20.
  • Downloads

  • How to Cite

    Faraz Changizi, Maryam Abdolmaleki, Mina Farjam, & Laya Ohadi. (2024). A comprehensive review of etiology, pathophysiologyepidemiology, and management of hair loss and its correlation with COVID-19. International Journal of Medicine, 12(2), 41-47. https://doi.org/10.14419/ax1s7206