A comprehensive review of metaheuristic algorithms for ‎combinatorial optimization problems

  • Authors

    • Nazik Saber Rashid AUAS
    • Ibrahim M. I. Zebari Akre University for Applied Sciences, Technical College of Informatics-Akre

    Received date: January 10, 2025

    Accepted date: February 25, 2025

    Published date: February 25, 2025

    https://doi.org/10.14419/d5pxkg39
  • Metaheuristic Algorithms; Combinatorial Optimization; Evolutionary Algorithms; Swarm Intelligence; Hybrid Optimization Frameworks‎.
  • Abstract

    Metaheuristic algorithms are essential for handling difficult combinatorial optimization issues that arise in a variety of domains such as engi-‎neering, logistics, and operations research. These algorithms, based on natural, social, and physical events, strike a compromise between ‎computing efficiency and solution quality. This study divides metaheuristic approaches into three categories: evolutionary algorithms, ‎swarm intelligence techniques, and physics-based models, with a focus on current advances like hybrid and AI-driven frameworks. It also ‎examines issues like as standardization, scalability, and practical implementation, including examples such as the Fire Hawk Optimizer to ‎demonstrate its uses. This study intends to lead the development of trustworthy and efficient metaheuristic algorithms to solve increasingly ‎complicated optimization issues in real-world settings, integrating theoretical ideas and practical examples‎.

     

  • References

    1. Maier H R, Razavi S, Kapelan Z, L. S. E. Kasprzyk, and J. F. Tolson, “Introductory Overview: Optimization using Evolutionary ‎Algorithms and other Metaheuristics,” 2018.‎ https://doi.org/10.1016/j.envsoft.2018.11.018.
    2. ‎H. Shayanfar and F. S. Gharehchopogh, “Farmland fertility: A new metaheuristic algorithm for solving continuous optimization ‎problems,” Applied Soft Computing Journal, vol. 71, pp. 728–746, Oct. 2018, https://doi.org/10.1016/j.asoc.2018.07.033.
    3. M. Azizi, S. Talatahari, and A. H. Gandomi, “Fire Hawk Optimizer: a novel metaheuristic algorithm,” Artif Intell Rev, vol. 56, no. ‎‎1, pp. 287–363, Jan. 2023, https://doi.org/10.1007/s10462-022-10173-w.
    4. M. Abdel-Basset, L. Abdel-Fatah, and A. K. Sangaiah, “Metaheuristic algorithms: A comprehensive review,” in Computational ‎Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, Elsevier, 2018, pp. 185–231. https://doi.org/10.1016/B978-0-12-813314-9.00010-4.
    5. B. Morales-Castañeda, D. Zaldívar, E. Cuevas, F. Fausto, and A. Rodríguez, “A better balance in metaheuristic algorithms: Does it ‎exist?,” Swarm Evol Comput, vol. 54, May 2020, https://doi.org/10.1016/j.swevo.2020.100671.
    6. V. C. Vinod and A. H. S, “Nature inspired meta heuristic algorithms for optimization problems,” Computing, vol. 104, no. 2, pp. ‎‎251–269, Feb. 2022, https://doi.org/10.1007/s00607-021-00955-5.
    7. ‎F. Peres and M. Castelli, “Combinatorial optimization problems and metaheuristics: Review, challenges, design, and development,” ‎Applied Sciences (Switzerland), vol. 11, no. 14, Jul. 2021, https://doi.org/10.3390/app11146449.
    8. V. Sharma and A. K. Tripathi, “A systematic review of meta-heuristic algorithms in IoT based application,” Array, vol. 14, Jul. ‎‎2022, https://doi.org/10.1016/j.array.2022.100164.
    9. D. Leiva, B. Ramos-Tapia, B. Crawford, R. Soto, and F. Cisternas-Caneo, “A Novel Approach to Combinatorial Problems: Bina-‎ry Growth Optimizer Algorithm,” Biomimetics, vol. 9, no. 5, May 2024, https://doi.org/10.3390/biomimetics9050283.
    10. A. I. Garmendia, J. Ceberio, and A. Mendiburu, “Applicability of Neural Combinatorial Optimization: A Critical View,” ACM ‎Transactions on Evolutionary Learning and Optimization, vol. 4, no. 3, Jul. 2024, https://doi.org/10.1145/3647644.
    11. N. T. X. Hoa and V. H. Anh, “BIBLIOMETRIC STUDY OF METAHEURISTICS APPLICATION FOR SOLVING INVEN-‎TORY ROUTING PROBLEM,” Revista de Gestao Social e Ambiental, vol. 18, no. 2, 2024, https://doi.org/10.24857/rgsa.v18n2-116.
    12. E. H. Houssein, M. K. Saeed, G. Hu, and M. M. Al-Sayed, “Metaheuristics for Solving Global and Engineering Optimization ‎Problems: Review, Applications, Open Issues and Challenges,” Dec. 01, 2024, Springer Science and Business Media B.V. https://doi.org/10.1007/s11831-024-10168-6.
    13. Z. Meng, G. Li, X. Wang, S. M. Sait, and A. R. Yıldız, “A Comparative Study of Metaheuristic Algorithms for Reliability-Based ‎Design Optimization Problems,” Archives of Computational Methods in Engineering, vol. 28, no. 3, pp. 1853–1869, May 2021, ‎ https://doi.org/10.1007/s11831-020-09443-z.
    14. B. Chopard and M. Tomassini, “Natural Computing Series an Introduction to Metaheuristics for Optimization.” [Online]. Availa-‎ble: www.springer.com/series/‎
    15. ‎M. Abdel-Basset, D. El-Shahat, and A. K. Sangaiah, “A modified nature inspired meta-heuristic whale optimization algorithm for ‎solving 0–1 knapsack problem,” International Journal of Machine Learning and Cybernetics, vol. 10, no. 3, pp. 495–514, Mar. ‎‎2019, https://doi.org/10.1007/s13042-017-0731-3.
    16. V. Hayyolalam and A. A. Pourhaji Kazem, “Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving ‎engineering optimization problems,” Eng Appl Artif Intell, vol. 87, Jan. 2020, https://doi.org/10.1016/j.engappai.2019.103249.‎
    17. P. S. Game and V. Vaze, “Bio-inspired Optimization: metaheuristic algorithms for optimization,” NTCOMIS-2020.‎
    18. F. A. Hashim, K. Hussain, E. H. Houssein, M. S. Mabrouk, and W. Al-Atabany, “Archimedes optimization algorithm: a new ‎metaheuristic algorithm for solving optimization problems,” Applied Intelligence, vol. 51, no. 3, pp. 1531–1551, Mar. 2021, https://doi.org/10.1007/s10489-020-01893-z.
    19. E. Osaba et al., “A Tutorial on the Design, Experimentation and Application of Metaheuristic Algorithms to Real-World Optimiza-‎tion Problems.”‎
    20. A. Seyyedabbasi, R. Aliyev, F. Kiani, M. U. Gulle, H. Basyildiz, and M. A. Shah, “Hybrid algorithms based on combining rein-‎forcement learning and metaheuristic methods to solve global optimization problems,” Knowl Based Syst, vol. 223, Jul. 2021, https://doi.org/10.1016/j.knosys.2021.107044.
    21. M. Yousefikhoshbakht, “Solving the Traveling Salesman Problem: A Modified Metaheuristic Algorithm,” Complexity, vol. 2021, ‎‎2021, https://doi.org/10.1155/2021/6668345.
    22. B. Abdollahzadeh, F. Soleimanian Gharehchopogh, and S. Mirjalili, “Artificial gorilla troops optimizer: A new nature-inspired ‎metaheuristic algorithm for global optimization problems,” International Journal of Intelligent Systems, vol. 36, no. 10, pp. 5887–‎‎5958, Oct. 2021, https://doi.org/10.1002/int.22535.
    23. S. Talatahari, M. Azizi, and A. H. Gandomi, “Material generation algorithm: A novel metaheuristic algorithm for optimization of ‎engineering problems,” Processes, vol. 9, no. 5, 2021, https://doi.org/10.3390/pr9050859.
    24. J. S. Pan, L. G. Zhang, R. Bin Wang, V. Snášel, and S. C. Chu, “Gannet optimization algorithm : A new metaheuristic algorithm ‎for solv-ing engineering optimization problems,” Math Comput Simul, vol. 202, pp. 343–373, Dec. 2022, https://doi.org/10.1016/j.matcom.2022.06.007.
    25. M. Braik, M. H. Ryalat, and H. Al-Zoubi, “A novel meta-heuristic algorithm for solving numerical optimization problems: Ali ‎Baba and the forty thieves,” Neural Comput Appl, vol. 34, no. 1, pp. 409–455, Jan. 2022, https://doi.org/10.1007/s00521-021-06392-x.
    26. E. S. M. El-Kenawy et al., “Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering ‎Problems,” IEEE Access, vol. 10, pp. 40536–40555, 2022, https://doi.org/10.1109/ACCESS.2022.3166901.
    27. M. Dehghani, E. Trojovská, and P. Trojovský, “A new human-based metaheuristic algorithm for solving optimization problems on ‎the base of simulation of driving training process,” Sci Rep, vol. 12, no. 1, Dec. 2022, https://doi.org/10.1038/s41598-022-14225-7.
    28. O. N. Oyelade, A. E. S. Ezugwu, T. I. A. Mohamed, and L. Abualigah, “Ebola Optimization Search Algorithm: A New Nature-‎Inspired Metaheuristic Optimization Algorithm,” IEEE Access, vol. 10, pp. 16150–16177, 2022, https://doi.org/10.1109/ACCESS.2022.3147821.
    29. F. A. Hashim, E. H. Houssein, K. Hussain, M. S. Mabrouk, and W. Al-Atabany, “Honey Badger Algorithm: New metaheuristic ‎algorithm for solving optimization problems,” Math Comput Simul, vol. 192, pp. 84–110, Feb. 2022, https://doi.org/10.1016/j.matcom.2021.08.013.
    30. T. S. L. V. Ayyarao et al., “War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimiza-‎tion,” IEEE Access, vol. 10, pp. 25073–25105, 2022, https://doi.org/10.1109/ACCESS.2022.3153493.
    31. T. Mzili, I. Mzili, and M. E. Riffi, “ARTIFICIAL RAT OPTIMIZATION WITH DECISION-MAKING: A BIO-INSPIRED ‎METAHEURISTIC ALGORITHM FOR SOLVING THE TRAVELING SALESMAN PROBLEM,” Decision Making: Appli-‎cations in Management and Engineering, vol. 6, no. 2, pp. 150–176, Oct. 2023, https://doi.org/10.31181/dmame622023644.
    32. M. Dehghani and P. Trojovský, “Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineer-‎ing optimization problems,” Front Mech Eng, vol. 8, Jan. 2023, https://doi.org/10.3389/fmech.2022.1126450.
    33. E. V. Altay, O. Altay, and Y. Özçevik, “A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World ‎Engineering Design Problems,” CMES - Computer Modeling in Engineering and Sciences, vol. 139, no. 1, pp. 1039–1094, 2023, ‎ https://doi.org/10.32604/cmes.2023.029404.
    34. R. Martín-Santamaría, M. López-Ibáñez, T. Stützle, and J. M. Colmenar, “On the automatic generation of metaheuristic algorithms ‎for combinatorial optimization problems,” Eur J Oper Res, vol. 318, no. 3, pp. 740–751, Nov. 2024, https://doi.org/10.1016/j.ejor.2024.06.001.
    35. M. Abdel-Basset, R. Mohamed, S. Saber, I. M. Hezam, K. M. Sallam, and I. A. Hameed, “Binary metaheuristic algorithms for 0–‎‎1 knapsack problems: Performance analysis, hybrid variants, and real-world application,” Journal of King Saud University - Com-‎puter and Information Sciences, vol. 36, no. 6, Jul. 2024, https://doi.org/10.1016/j.jksuci.2024.102093.
    36. R. Zhong, Y. Xu, C. Zhang, and J. Yu, “Leveraging Large Language Model to Generate a Novel Metaheuristic Algorithm with ‎CRISPE Framework,” Mar. 2024, [Online]. Available: http://arxiv.org/abs/2403.16417‎
    37. E. H. Houssein, M. A. Mahdy, M. J. Blondin, D. Shebl, and W. M. Mohamed, “Hybrid slime mould algorithm with adaptive ‎guided dif-ferential evolution algorithm for combinatorial and global optimization problems,” Expert Syst Appl, vol. 174, Jul. 2021, ‎ https://doi.org/10.1016/j.eswa.2021.114689.
    38. J. Kallestad, R. Hasibi, A. Hemmati, and K. Sörensen, “A general deep reinforcement learning hyperheuristic framework for solv-‎ing combinatorial optimization problems,” Eur J Oper Res, vol. 309, no. 1, pp. 446–468, Aug. 2023, https://doi.org/10.1016/j.ejor.2023.01.017.
    39. A. Arram, M. Ayob, G. Kendall, and A. Sulaiman, “Bird Mating Optimizer for Combinatorial Optimization Problems,” IEEE ‎Access, vol. 8, pp. 96845–96858, 2020, https://doi.org/10.1109/ACCESS.2020.2993491.
    40. ‎H. R. Boveiri and M. Elhoseny, “A-COA: an adaptive cuckoo optimization algorithm for continuous and combinatorial optimiza-‎tion,” Feb. 01, 2020, Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00521-018-3928-9.‎
    41. A. G. Hussien, A. E. Hassanien, E. H. Houssein, M. Amin, and A. T. Azar, “New binary whale optimization algorithm for dis-‎crete op-timization problems,” Engineering Optimization, vol. 52, no. 6, pp. 945–959, Jun. 2020, https://doi.org/10.1080/0305215X.2019.1624740.
    42. N. Benabbou, C. Leroy, and T. Lust, “An Interactive Regret-Based Genetic Algorithm for Solving Multi-Objective Combinatorial ‎Optimization Problems.” [Online]. Available: www.aaai.org.
    43. V. Santucci, M. Baioletti, and A. Milani, “An Algebraic Framework for Swarm and Evolutionary Algorithms in Combinatorial ‎Optimization.”‎
    44. M. T. Khumalo, H. A. Chieza, K. Prag, and M. Woolway, “An investigation of IBM Quantum Computing device performance on ‎Combinatorial Optimisation Problems,” Jul. 2021, [Online]. Available: http://arxiv.org/abs/2107.03638‎.
  • Downloads

  • How to Cite

    Saber Rashid, N. ., & M. I. Zebari , I. . (2025). A comprehensive review of metaheuristic algorithms for ‎combinatorial optimization problems. International Journal of Scientific World, 11(1), 83-92. https://doi.org/10.14419/d5pxkg39

    Received date: January 10, 2025

    Accepted date: February 25, 2025

    Published date: February 25, 2025