Holographic Dark Energy Model With Time Varying Deceleration Parameter

Authors

  • R P. Wankhade Jawaharlal Darda Institute of Engg. & Tech., Yavatmal (M.S)India-445001

DOI:

https://doi.org/10.14419/ijaa.v6i2.13561

Published:

2018-08-04

Keywords:

Bianchi Type-I Space-Time, Time Varying Deceleration Parameter, Holographic Dark Energy.

Abstract

Two minimally interacting fluids; dark matter and holographic dark energy components has been studied in a spatially homogeneous and anisotropic Bianchi type-I space-time. The solutions of the Einstein’s field equations are obtained under the assumption of time varying deceleration parameter (Abdussattar and S. Prajapati, Astrophys. Space Sci. 331, 65, 2011) which represents transition of the universe from the early decelerating phase to the recent accelerating phase. It is shown that for large expansion the model reduces to model while for suitable choice of interaction between dark matter and holographic dark energy the anisotropy parameter of the universe approaches to zero for large cosmic time and the coincidence parameter increases with increase in time. Allowing for time dependent deceleration parameter the solutions of the field equations and some physical and geometric properties of the model along with physical acceptability of the solutions have also been discussed in details.

 

References

[1] Riess, A.G., et al.: Astron. J. 116, 1009 (1998). astro-ph/9805201.https://doi.org/10.1086/300499.

[2] Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999). astro-ph/9812133.https://doi.org/10.1086/307221.

[3] Bennett, C.L., et al.: Astrophys. J. Suppl. 148, 1 (2003). astro-ph/0302207.

[4] Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003). astro-ph/0302209.

[5] Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004a). astro-ph/0310723. https://doi.org/10.1103/PhysRevD.69.103501.

[6] Tegmark, M., et al.: Astrophys. J. 606, 702 (2004b). astro-ph/0310725.https://doi.org/10.1086/382125.

[7] Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1.

[8] Carroll, S.M.: Living Rev. Relativ. 4, 1 (2001). astro-ph/0004075.https://doi.org/10.12942/lrr-2001-1.

[9] Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003). astro-ph/0207347.https://doi.org/10.1103/RevModPhys.75.559.

[10] Padmanabhan, T.: Phys. Rep. 380, 235 (2003). hep-th/0212290.https://doi.org/10.1016/S0370-1573(03)00120-0.

[11] Zhang X., Int. J. Mod. Phys. D 14 1597 (2005) .https://doi.org/10.1142/S0218271805007243.

[12] Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Phys. Rev. Lett. 82, 4971(1999) .https://doi.org/10.1103/PhysRevLett.82.4971.

[13] Horava, P., Minic, D.: Phys. Rev. Lett. 85, 1610 (2000).https://doi.org/10.1103/PhysRevLett.85.1610.

[14] Thomas, S.: Phys. Rev. Lett. 89, 081301 (2002). https://doi.org/10.1103/PhysRevLett.89.081301.

[15] Li, M.: Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014.

[16] Enqvist K., Hannested S. and Sloth M. S., JCAP 2 004 (2005).

[17] Thorlocius L., hep-th/0404098.

[18] Hooft G. T., gr-qc/9310026.

[19] Susskind L., J. Math. Phys. 36 6377 (1995). https://doi.org/10.1063/1.531249.

[20] Fischler W. and Susskind L., hep-th/9806039.

[21] Tavakol R. and Ellis G., Phys. Lett. B 469 33 (1999) .https://doi.org/10.1016/S0370-2693(99)01269-1.

[22] Esther R. and Lowe D., Phys. Rev. Lett. 82 4967 (1999). https://doi.org/10.1103/PhysRevLett.82.4967.

[23] Wang B., Gong Y. and Abdalla E., Phys. Lett. B 624 141 (2005). https://doi.org/10.1016/j.physletb.2005.08.008.

[24] Gong Y., Phys. Rev. D 70 064029 (2004). https://doi.org/10.1103/PhysRevD.70.064029.

[25] Pavon D. and Zimdahl W., hep-th/0511053.

[26] Zhang, X., Wu, F.Q.: Phys. Rev. D 72, 043524 (2005). https://doi.org/10.1103/PhysRevD.72.043524.

[27] Shen, J., Wang, B., Abdalla, E., Su, R.K.: Phys. Lett. B 609,200 (2005). https://doi.org/10.1016/j.physletb.2005.01.051.

[28] Chang, Z., Wu, F.Q., Zhang, X.: Phys. Lett. B 633, 14 (2006). https://doi.org/10.1016/j.physletb.2005.10.095.

[29] Wang, B., Lin, C.Y., Abdalla, C.Y.: Phys. Lett. B 637, 357 (2006). https://doi.org/10.1016/j.physletb.2006.04.009.

[30] Carvalho, F.C., Saa, A.: Phys. Rev. D 70, 087302 (2004). https://doi.org/10.1103/PhysRevD.70.087302.

[31] Perivolaropoulos, L.: J. Cosmol. Astropart. Phys. 0510, 001 (2005).

[32] Gong, Y.G., Zhang, Y.Z.: Class. Quantum Gravity 22, 4895 (2005) https://doi.org/10.1088/0264-9381/22/22/014.

[33] Huang, Q.G., Li, M.: J. Cosmol. Astropart. Phys. 0408, 013 (2004).

[34] Nojiri, S., Odintsov, S.D.: Gen. Relativ. Gravit. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6.

[35] Guberina, B., Horvat, R., Nikolic, H.: Phys. Rev. D 72, 125011 (2005) .https://doi.org/10.1103/PhysRevD.72.125011.

[36] Guberina, B., Horvat, R., Nikolic, H.: Phys. Lett. B 636, 80 (2006) .https://doi.org/10.1016/j.physletb.2006.03.041.

[37] Guo, Z.K., Ohta, N., Zhang, Y.Z.: Phys. Rev. D 72, 023504 (2005). https://doi.org/10.1103/PhysRevD.72.023504.

[38] Guo, Z.K., Ohta, N., Tsujikawa, S.: Phys. Rev. D 76, 023508 (2007a). https://doi.org/10.1103/PhysRevD.76.023508.

[39] Guo, Z.K., Ohta, N., Zhang, Y.Z.: Mod. Phys. Lett. A 22, 883 (2007b) .https://doi.org/10.1142/S0217732307022839.

[40] Hu, B., Ling, Y.: Phys. Rev. D 73, 123510 (2006). https://doi.org/10.1103/PhysRevD.73.123510.

[41] Li, H., Guo, Z.K., Zhang, Y.Z.: Int. J. Mod. Phys. D 15, 869 (2006). https://doi.org/10.1142/S0218271806008577.

[42] Setare, M.R.: Phys. Lett. B 642, 1 (2006). https://doi.org/10.1016/j.physletb.2006.09.027.

[43] Setare, M.R.: Phys. Lett. B 644, 99 (2007). https://doi.org/10.1016/j.physletb.2006.11.033.

[44] Sadjadi, H.M.: J. Cosmol. Astropart. Phys. 02, 026 (2007).

[45] Banerjee, N., Pavón, D.: Phys. Lett. B 647, 477 (2007) .https://doi.org/10.1016/j.physletb.2007.02.035.

[46] Kim, H., Lee, H.W., Myung, Y.S.: Phys. Lett. B 632, 605 (2006) .https://doi.org/10.1016/j.physletb.2005.11.043.

[47] Zimdahl, W., Pavón, D.: Class. Quantum Gravity 24, 5641 (2007) .https://doi.org/10.1088/0264-9381/24/22/011.

[48] Zimdahl, W.: Int. J. Mod. Phys. D 17, 651 (2008) .https://doi.org/10.1142/S0218271808012395.

[49] Sarkar, S.: Astrophys. Space Sci. 349(2), 985 (2014a) .https://doi.org/10.1007/s10509-013-1684-y.

[50] Adhav et al., Astrophys Space Scihttps://doi.org/10.1007/s10509-014-2015-7.

[51] Raut V.B.et al.,European Int. J. of Sci. and Tech. Vol. 5, 1 (2016).

[52] Akarsu O., Dereli T., Int. J. Theor. Phys. 51, 612, (2012). https://doi.org/10.1007/s10773-011-0941-5.

[53] Abdussattar and S. Prajapati, Astrophys. Space Sci. 331, 65, (2011).

[54] Capozziello, S., et al.: Phys. Lett. B 632, 597 (2006). https://doi.org/10.1016/j.physletb.2005.11.012.

[55] Ade. P.A.R, et al.: (2013). arXiv:1303.5076.

[56] Blandford, R.D., et al.: (2004). arXiv:astro-ph/0408279.

[57] Chiba, T., Nakamura, T.: Prog. Theor. Phys. 100, 1077 (1998). https://doi.org/10.1143/PTP.100.1077.

[58] Sahni, V.: (2002). arXiv:astro-ph/0211084.

[59] Visser, M.: Class. Quantum Gravity 21, 2603 (2004). https://doi.org/10.1088/0264-9381/21/11/006.

[60] Visser, M.: Gen. Relativ. Gravit. 37, 1541 (2005). https://doi.org/10.1007/s10714-005-0134-8.

[61] Granda, L.N., Oliveros, A.: Phys. Lett. B 669, 275 (2008). https://doi.org/10.1016/j.physletb.2008.10.017.

[62] Knop R. A. et al., Astrophys J, 598, 102, (2003) .https://doi.org/10.1086/378560.

[63] Hinshaw G. et al., Astrophys J. Suppl., 180,225, (2009). https://doi.org/10.1088/0067-0049/180/2/225.

View Full Article: