Basics of the decelerating black hole universe

  • Authors

    • Satya Seshavatharam UV I-SERVE, Hyderabad, AP, India. Sr. Engineer, QA-DIP, Lanco Industries Ltd, Tirupati, AP, India.
    • Lakshminarayana S Andhra University, AP, India
    2014-06-14
    https://doi.org/10.14419/ijaa.v2i1.2765
  • Abstract

    Throughout the cosmic evolution, currently believed cosmic ‘critical density’ can be shown to be a default result of the ‘positively curved’ light speed rotating black hole universe ‘volume density’. As there is no observational or experimental evidence to Friedmann’s second assumption, the density classification scheme of Friedmann cosmology must be reviewed at fundamental level and possibly can be relinquished. The observed cosmic redshift can be reinterpreted as an index of ‘cosmological’ thermodynamic light emission mechanism. Clearly speaking during cosmic evolution, at any time in the past, in hydrogen atom- emitted photon energy was always inversely proportional to the cosmic temperature. Thus past light emitted from older galaxy’s excited hydrogen atom will show redshift with reference to the current laboratory data. Note that there will be no change in the energy of the emitted photon during its journey from the distant galaxy to the observer. In no way ‘redshift’ seems to be connected with ‘galaxy receding’. By considering the ‘Stoney mass’ as the initial mass of the baby cosmic black hole, past and current physical and thermal parameters (like angular velocity, growth rate, age, redshift, thermal energy density and matter density) of the cosmic black hole can be understood. For a cosmic temperature of 3000 K, obtained redshift is 1100. From now onwards, CMBR temperature can be called as ‘Comic Black Hole’s Thermal Radiation’ temperature and can be expressed as ‘CBHTR’ temperature. Current cosmic black hole is growing at a rate of 14.66 km/sec in a decelerating mode. Uncertainty relation and all other microscopic physical constants play a crucial role in understanding the halt of the present cosmic expansion. In view of the confirmed zero rate of change in inverse of the Fine structure ratio (from the ground based laboratory experimental results), zero rate of change in the current CMBR temperature (from satellite data) and zero rate of change in the current Hubble’s constant (from satellite data), it can be suggested that, current cosmic expansion is almost all saturated and at present there is no significant cosmic acceleration.

     

    Keywords: Mach’s Principle, Stoney Mass, Black Hole Cosmology, Cosmic Growth Index, Cosmic Growth Rate, Hubble Potential, Cosmic Redshift, Cosmic Age, Halting Of Cosmic Expansion, Final Unification.

  • References

    1. U. V. S. Seshavatharam, S. Lakshminarayana. Basics of black hole cosmology – first critical scientific review. Physical Science International journal, Vol-4, Issue-6, p.842-879. (2014)
    2. Seshavatharam, U. V. S. & Lakshminarayana, S., On the Role of Hubble Volume in Black Hole Cosmology & Final Unification. Prespacetime Journal, February 2014, Volume 5, Issue 2, pp. 148-173.
    3. U. V. S. Seshavatharam. Physics of rotating and expanding black hole universe. Progress in Physics. April, p 7-14, (2010).
    4. U.V.S. Seshavatharam. The Primordial Cosmic Black Hole and the Cosmic Axis of Evil. International Journal of Astronomy, 1(2): 20-37, (2012).
    5. Seshavatharam, U. V. S, Lakshminarayana, S. Applications of Hubble Volume in Atomic Physics, Nuclear Physics, Particle Physics, Quantum Physics and Cosmic Physics. Journal of Nuclear Physics, Material Sciences, Radiation and Applications Vol. 1, No. 1, August 2013 pp. 45–60.
    6. Seshavatharam U.V. S, Lakshminarayana. S, To confirm the existence of Black hole cosmology. International Journal of Advanced Astronomy, 2 (1), 21-36, 2013
    7. U. V. S. Seshavatharam, S. Lakshminarayana, Hubble Volume and the Fundamental Interactions, International Journal of Astronomy, Vol. 1 No. 5, 2012, pp. 87-100.
    8. U. V. S. Seshavatharam, S. Lakshminarayana, B.V.S.T. Sai. Is red shift an index of galactic‘atomic light emission’ mechanism? International Journal of Physics, Vol. 1, No.3, 49-64, (2013).
    9. U. V. S. Seshavatharam, S. Lakshminarayana Microscopic Physical Phenomena in Black Hole Cosmos Rotating at Light Speed. Prespacetime Journal. October 2013, Volume 4, Issue 9, pp. 884-922.
    10. U. V. S. Seshavatharam, S. Lakshminarayana. Black Hole Cosmology: A Biological Boom. Journal of Astrobiology and Outreach, 2014, 2:1. http://dx.doi.org/10.4172/2332-2519.1000108.
    11. U. V. S. Seshavatharam, S. Lakshminarayana. Basic Interactions in Black Hole Cosmology. American Journal of Astronomy and Astrophysics. Vol. 2, No. 1, 2013, pp. 6-17. doi: 10.11648/j.ajaa.20140201.12
    12. U. V. S. Seshavatharam, S. Lakshminarayana. Friedman Cosmology: Reconsideration and New Results, International Journal of Astronomy, Astrophysics and Space Science. Vol. 1, No. 2, 2014, pp. 16-26.
    13. Seshavatharam, U. V. S. and Lakshminarayana, S. The Reduced Planck's constant, Mach's Principle, Cosmic Acceleration and the Black Hole Universe. Journal of Physical Science and Application. Vol.2 (10) 441-447. (2012)
    14. Friedmann. A. On the Curvature of Space. General Relativity and Gravitation 31 (12): 1991-2000. 1999
    15. Pathria, R. K. The Universe as a Black Hole. Nature 240 (5379):298-299.doi:10.1038/240298a0 (1972).
    16. Good, I. J. Chinese universes. Physics Today 25 (7): 15. July. doi:10.1063/1.3070923 (1972).
    17. Joel Smoller and Blake Temple. Shock-wave cosmology inside a black hole. Proc Natl Acad Sci U S A. September 30; 100(20): 1121611218. (2003).
    18. Chul-Moon Yoo et al. Black Hole Universe. Time evolution. Phys. Rev. Lett. 111, 161102 (2013).
    19. Michael E. McCulloch. A Toy Cosmology Using a Hubble-Scale Casimir Effect. Galaxies 2014, 2, 81-88.
    20. T.X. Zhang and C. Frederic. Acceleration of black hole universe. Astrophysics and Space Science, Volume 349, Issue 1, pp 567-573. (2013).
    21. Zhang, Tianxi. Cosmic microwave background radiation of black hole universe. Astrophysics and Space Science, Volume 330, Issue 1, pp 157-165. (2010).
    22. Zhang, Tianxi. Quasar Formation and Energy Emission in Black hole universe http://downloads.hindawi.com/journals/aa/2012/625126.pdf. Progress in Physics, 3: 48-53, (2012).
    23. Poplawski, N. J. Radial motion into an Einstein-Rosen bridge. Physics Letters B 687 (23): 110-113. (2010).
    24. Poplawski, N. J. Big bounce from spin and torsion. General Relativity and Gravitation Vol. 44, No. 4 (2012) pp. 1007–1014.
    25. Poplawski, N. J. Energy and momentum of the Universe. Class. Quantum Grav. 31, 065005 (2014).
    26. Pourhasan R, Afshordi N and Mann R.B. Did a hyper black hole spawn the universe? Nature - International weekly journal of science. 13 September 2013, doi:10.1038/nature.2013.13743, arXiv: 1309. 1487v2.
    27. Andy Gardner, Joseph P. Conlon. Cosmological natural selection and the purpose of the universe. Complexity. Vol.18, Issue 5, pp48-56. 2013
    28. Smolin, L. Cosmological natural selection as the explanation for the complexity of the universe. Physica A 340, 705-713. 2004.
    29. Hawking S.W. A Brief History of Time. Bantam Dell Publishing Group. 1988
    30. Hubble E. P, A relation between distance and radial velocity among extra-galactic nebulae, PNAS, 1929, vol. 15, 1929, pp.168-173.
    31. Hubble, E.P, The 200-inch telescope and some problems it may solve. PASP, 59, pp153-167, 1947.
    32. J. A. Frieman et al. Dark energy and the accelerating universe. Ann.Rev.Astron.Astrophys.46, 2008, p 385.
    33. The Accelerating Universe. The Royal Swedish Academy of sciences. 2011 Nobel Prize in physics. www.nobelprize.org/nobel_prizes/physics/laureates/2011/advanced-physicsprize2011.pdf
    34. Hawking, S.W.; Ellis, G.F.R. (1973). The Large-Scale Structure of Space-Time. Cambridge University Press.
    35. G.J. Stoney, On the Physical Units of Nature. Phil.Mag. 11 (1881) 381-91.
    36. Michael J. Longo, Detection of a Dipole in the Handedness of Spiral Galaxies with Redshifts z 0.04, Phys. Lett. B 699, 224-229 2011.
    37. S.-C. Su and M.-C. Chu. Is the universe rotating? Astrophysical Journal, 703 354. 2009.
    38. J. D. McEwen et al. Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP. Mon. Not. R. Astron. Soc. 000, 1–15 (2013). ArXiv: 1303.3409v1.
    39. L. M. Chechin. On the Modern Status of the Universe Rotation Problem. Journal of Modern Physics, 2013, 4, 126-132.
    40. C Sivaram and Kenath Arun, Primordial Rotation of the Universe, Hydrodynamics, Vortices and Angular Momenta of Celestial Objects. The Open Astronomy Journal, 2012, 5, 7-11
    41. Sidharth, B.G. Is the Universe Rotating? Prespacetime Journal. October 2010, Vol. 1, Issue 7, pp. 1168-1173.
    42. Marcelo Samuel Berman, Fernando de Mello Gomide. Local and Global Stability of the Universe. Journal of Modern Physics, 2013, 4, 7-9
    43. Robert V Gentry. New Cosmic Center Universe Model Matches Eight of Big Bang’s Major Predictions without the F-L Paradigm. CERN preprint, EXT-2003-022, 14 Apr 2003.
    44. G. Chapline et al. Tommy Gold Revisited: Why Does Not The Universe Rotate? AIP Conf.Proc.822:160-165, 2006. http://arxiv.org/abs/astro-ph/0509230.
    45. Dmitri Rabounski. On the Speed of Rotation of Isotropic Space: Insight into the Redshift Problem. The Abraham Zelmanov Journal, Vol. 2, 2009, 208-223.
    46. Kurt Godel. Rotating Universes in General Relativity Theory. Proceedings of the international Congress of Mathematicians in Cambridge, 1: 175-81, 1950.
    47. S.W. Hawking. On the rotation of the universe. Mon. Not. Royal. Astr. Soc. 142, 129-141.1969.
    48. M. Novello and M. J. Reboucas. Rotating universe with successive causal and noncausal regions. Phys. Rev. D 19, 2850-2852 (1979)
    49. Barrow J D, Juszkiewicz R, Sonoda DH. Universal rotation - How large can it be? Mon. Not. R. Astron. Soc. 1985; 213: 917.
    50. Christopher S. Reynolds. Astrophysics: Black holes in a spin. Nature. 494, 432–433 (28 February 2013)
    51. U. V. S. Seshavatharam. Light speed rotating black holes: The special holes International Journal of Advanced Astronomy, 1 (1) (2013) 13-20.
    52. Louis Marmet. On the Interpretation of Red-Shifts: A Quantitative Comparison of Red-Shift Mechanisms. www.marmet.org/louis/index.html
    53. J. Beringer et al. Particle Data Group. Phys. Rev. D86, 010001 (2012)
    54. C. L. Bennett et al, Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Submitted to Astrophysical Journal Supplement Series. http://arxiv.org/abs/1212.5225v1
    55. David N. Spergel et al. Planck Data Reconsidered. http://arxiv.org/pdf/1312.3313.pdf
    56. W. L. Freedman et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. The Astrophysical Journal 553 (1): 47-72. 2001.
    57. P.J. Mohr, B.N. Taylor, and D.B. Newell in arXiv:1203.5425 and Rev. Mod. Phys. (to be published). http://pdg.lbl.gov/2013/reviews/rpp2012-rev-phys-constants.pdf
    58. N. Bohr. On the Constitution of Atoms and Molecules. (Part-1) Philos. Mag. 26, 1913, p 1.
    59. Abdus Salam. Einstein’s Last Dream: The Space -Time Unification of Fundamental Forces, Physics News, 12(2):36, June 1981.
    60. David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. 2005, p 12.
    61. J. V. Narlikar. Introduction to cosmology. Cambridge Univ Press, 2002.
    62. Lianxi Ma et al. Two forms of Wien’s displacement law. Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009
    63. Hawking S.W. Particle creation by black holes. Commun. Math. Phys., 1975, v.43, 199–220.
    64. Gaurab Ganguly et al. SeD Radical: A probe for measurement of time variation of Fine Structure Constant (α) and Proton to Electron Mass Ratio (µ). http://arxiv.org/pdf/1403.4061v2.pdf.
    65. J.K. Webb et al. Indications of a spatial variation of the fine structure constant. Physical Review letters, 107 (19) 2011
    66. Srianand R. et al., Time Variation of the Fine Structure Constant. The Messenger. No.116, 25-28 (2004)
    67. P. A. M. Dirac. The cosmological constants. Nature, 139, 1937, p 323.
    68. P. A. M. Dirac. A new basis for cosmology. Proc. Roy. Soc. A 165, 1938, p 199.
    69. Brandon Carter. Large number coincidences and the anthropic principle in cosmology. General Relativity and Gravitation., Volume 43, Issue 11, pp 3225-3233, (2011)
    70. Ross A. McPherson. The Numbers Universe: An Outline of the Dirac/Eddington Numbers as Scaling Factors for Fractal, Black Hole Universes. EJTP 5, No. 18 (2008) 81–94;
    71. Scott Funkhouser. A new large-number coincidence and a scaling law for the cosmological constant. Proc. R. Soc. A 8 May 2008 vol. 464 no. 20931345-1353;
    72. Barrow, J.D. The Constants of Nature from Alpha to Omega-The Numbers that Encode the Deepest Secrets of the Universe. Pantheon Books, 2002;
    73. Gamov G. Numerology for the constants of nature. Proceedings of the National Academy of Science U.S.A., 1968, v. 59(2), 313–318;
    74. Saibal Ray, Utpal Mukhopadhyay and Partha Pratim Ghosh. Large Number Hypothesis: A Review. http://arxiv.org/pdf/0705.1836.pdf
    75. P.J. Mohr, B.N. Taylor, and D.B. Newell in arXiv: 1203.5425 and Rev. Mod. Phys. http://pdg.lbl.gov/2013/reviews/rpp2012-rev-phys-constants.pdf
    76. Michael O. Distler et al. The RMS Charge Radius of the Proton and Zemach Moments. Phys. Lett.B. 696: 343-347,2011
    77. Geiger H and Marsden E. On a diffuse reaction of the particles. Proc. Roy. Soc., Ser. An 82: 495-500, 1909.
    78. H. Yukawa. On the Interaction of Elementary Particles. Proc. Phys. Math. Soc. Jap. 17 (48). 1935
    79. Recami E. Elementary Particles as Micro-Universes, and “Strong Black-holes”: A Bi-Scale Approach to Gravitational and Strong Interactions. Preprint NSF-ITP-02-94. Posted in the arXives as the e-print physics/0505149, and references therein.
    80. Salam A. and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., 1993, v. A8(4), 321-326.
    81. Abdus Salam. Strong Interactions, Gravitation and Cosmology. Publ. in: NATO Advanced Study Institute, Erice, June16-July 6, 1972 ; in: High Energy Astrophysics and its Relation to Elementary Particle Physics, 441-452 MIT Press, Cambridge (1974).
    82. G.J. Stoney, On the Physical Units of Nature. Phil.Mag. 11 (1881) 381-91.
    83. U. V. S. Seshavatharam and S. Lakshminarayana, Strong nuclear gravitational constant and the origin of nuclear planck scale. Progress in Physics, vol. 3, July, 2010, p. 31-38.
    84. U. V. S. Seshavatharam and S. Lakshminarayana, Role of Avogadro number in grand unification. Hadronic Journal. Vol-33, No 5, 2010 October. p 513.
    85. U. V. S. Seshavatharam and S. Lakshminarayana. Accelerating universe and the expanding atom. Hadronic journal, 35(3): 271, 2012.
    86. U. V. S. Seshavatharam and S. Lakshminarayana. Nucleus in Strong nuclear gravity. Proceedings of the DAE Symp. On Nucl. Phys. 56: 302, 2011
    87. Terry Quinn, Harold Parks, Clive Speake and Richard Davis. An uncertain big G. Phys.Rev. Lett. 112.068103. (2013) http://dx.doi.org/10.1103/PhysRevLett.111.101102.
    88. J. B. Fixler; G. T. Foster; J. M. McGuirk; M. A. Kasevich. Atom Interferometer Measurement of the Newtonian Constant of Gravity, Science 315 (5808): 74–77, (2007).
  • Downloads

    Additional Files

  • How to Cite

    UV, S. S., & S, L. (2014). Basics of the decelerating black hole universe. International Journal of Advanced Astronomy, 2(1), 8-22. https://doi.org/10.14419/ijaa.v2i1.2765

    Received date: 2014-05-09

    Accepted date: 2014-06-07

    Published date: 2014-06-14