Light deflection angle in General Relativity via Daftardar-Jafari method


  • V. K. Shchigolev Department of Theoretical Physics, Ulyanovsk State University





Daftardar-Jafari Iterative Method, Deflection of Light, General Relativity, Schwarzschild Metric.


In this paper, the iterative method suggested by Daftardar and Jafari hereafter called Daftardar-Jafari method (DJM) is applied for studying the deflection of light in General Relativity. For this purpose, a brief review of the nonlinear geodesic equations in the spherical symmetry spacetime and the main ideas of DJM are given. As an illustrative example, the simple case of the Schwarzschild metric is considered for which the approximate solution to the null-geodesic equation and the deflection angle of light are obtained. We also compare the obtained result with some similar results presented earlier in the literature.




[1] S. Weinberg. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley. Press, New York, 1972.

[2] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, Calif, USA, 1973.

[3] R. M. Wald, General Relativity, University of Chicago Press, Chicago, Ill, USA, 1984.

[4] M. V. Bebronne, P.G.Tinyakov, "Erratum: Black hole solutions in massive gravity", J. High Energ. Phys., 2011 (2011), 18.

[5] C. Magnan, "Complete calculations of the perihelion precession of Mercury and the deflection of light by the Sun in General Relativity",

[6] J. Poutanen, "Accurate analytic formula for light bending in Schwarzschild metric", A A, 640 (2020), A24.

[7] R. S. Kuniyal, R. Uniyal, A. Biswas, et al., "Null geodesics and red–blue shifts of photons emitted from geodesic particles around a noncommutative black hole space–time", Int. J. Modern Phys. A, 33(16) (2018), 1850098.

[8] Ya-Peng Hu, Hongsheng Zhang, Jun-Peng Hou, and Liang-Zun Tang, "Perihelion Precession and Deflection of Light in the General Spherically Symmetric Spacetime", Advances in High Energy Physics, Volume 2014, Article ID 604321, 7 pages.

[9] V. Bozza, "Comparison of approximate gravitational lens equations and a proposal for an improved new one", Phys. Rev. D, 78 (2008), 103005.

[10] K. S. Virbhadra, D. Narasimha, S. M. Chitre, "Role of the scalar field in gravitational lensing", Astron. Astrophys., 337 (1998), 1.

[11] K. S. Virbhadra, George F. R. Ellis, "Schwarzschild black hole lensing", Phys. Rev. D, 62 (2000), 084003.

[12] M. K. Mak, C. S. Leung, and T. Harko, "Computation of the General Relativistic Perihelion Precession and of Light Deflection via the Laplace-Adomian Decomposition Method", Advances in High Energy Physics, Volume 2018, Article ID 7093592, 15 pages.

[13] G. W. Gibbons and M. C. Werner, "Classical and Quantum Gravity Applications of the Gauss–Bonnet theorem to gravitational lensing", Class. Quantum Grav., 25 (2008), 235009.

[14] G. Crisnejo and E. Gallo, "Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment", Phys. Rev. D, 97 (2018), 124016.

[15] J. Y. Kim, "Deflection of light by a Coulomb charge in Born–Infeld electrodynamics", Eur. Phys. J. C, 81 (2021), 508.

[16] W. Javed, M. B. Khadim, A. Ц vgь n, "Weak gravitational lensing by Bocharova–Bronnikov–Melnikov–Bekenstein black holes using Gauss–Bonnet theorem", Eur. Phys. J. Plus, 135 (2020), 595.

[17] J. G. Cramer, R. L. Forward, M. S. Morris, et al., "Natural wormholes as gravitational lenses", Phys. Rev. D, 51 (1995), 3117.

[18] K. Jusufi, N. Sarkar, F. Rahaman, et al., "Deflection of light by black holes and massless wormholes in massive gravity", Eur. Phys. J. C, 78 (2018), 349.

[19] J.-H. He, "Homotopy perturbation technique", Computer Methods in Applied Mechanics and Engineering, 178 (1999), 257-262.

[20] J. -H. He, "Variational iteration method- a kind of non-linear analytical technique: some examples", International Journal of Non-Linear Mechanics, 34(4) (1999), 699-708.

[21] V. Shchigolev, "Analytical Computation of the Perihelion Precession in General Relativity via the Homotopy Perturbation Method", Univ. J Comput. Math., 3(4) (2015), 45-49.

[22] V. K. Shchigolev, "Variational iteration method for studying perihelion precession and deflection of light in General Relativity", Int. J. Phys. Research, 4(2) (2016), 52.

[23] V. K. Shchigolev, D. N. Bezbatko, "On HPM approximation for the perihelion precession angle in general relativity", Int. J. Adv. Astronomy, 5(1) (2017), 38.

[24] V. K. Shchigolev, D. N. Bezbatko, "Studying Gravitational Deflection of Light by Kiselev Black Hole via Homotopy Perturbation Method", Gen. Relativ. Gravit., 51 (2019), 34.

[25] V. Daftardar-Gejji, H. Jafari, "An iterative method for solving non-linear functional equations", Journal of Mathematical Analysis and Applications, 316 (2006) 753–763.

[26] M. A. Al-Jawary, S. G. Abd-Al-Razaq, "Analytic and numerical solution for Duffing equations", Int. J. of Basic and Applied Sciences, 5 (2) (2016), 115-119.

[27] V. K. Shchigolev, "A Simple Analytic Approximation of Luminosity Distance in FLRW Cosmology using Daftardar-Jafari Method", Computer Science and Information Technology, 8(2) (2020), 43-49.

[28] S. Bhalekar, V. Daftardar-Gejji, "Convergence of the New Iterative Method", International Journal of Differential Equations, 2011, Article ID 989065, 10 pages.

View Full Article:

Additional Files