Nuclear evidences for confirming the physical existence of 585 GeV weak fermion and galactic observations of TeV radiation
-
Received date: January 22, 2025
Accepted date: February 21, 2025
Published date: March 8, 2025
https://doi.org/10.14419/yqrd2j69
-
4G Model of Final Unification; Electroweak Fermion; Weak Interactions; Strong Interactions; Nuclear Structure; Super Symmetry; String Theo-Ry; Detection of Galactic Tev Radiation. -
Abstract
Background: In our recent publications pertaining to 4G model of final unification and based on strong and electroweak interactions, we have proposed the existence of a weak fermion of rest energy 585 GeV. Objective: To confirm the physical existence of the proposed 585 GeV weak fermion by analyzing weak and strong interactions in a unified approach via 4G model of final unification, super symmetry and string theory. Method: Considering the proposed nuclear charge of 2.95e, proton, electron mass ratio, specific charge ratios of proton and electron, Fermi’s weak coupling constant, Reduced Planck’s constant, nucleon magnetic moments, nuclear stability, nuclear binding energy, nuclear mass and neutron lifetime, it is planned to confirm the physical existence of the proposed 585 GeV weak fermion. Results: All proposed logics and formulae clearly establish the physical existence of 585 GeV weak fermion directly and indirectly. Proceeding further, including the Fermi’s weak coupling constant and Newtonian gravitational constant, we have developed a procedure for estimating and fitting the fundamental physical constants in a unified approach. Conclusion: Believing in the physical existence of the proposed 585 GeV weak fermion, there is a scope for observing galactic TeV radiation coming by virtue of annihilation of 585 GeV fermions and radiation associated with various astrophysical acceleration mechanisms of 585 GeV fermions. Appeal: As we are beginners of astrophysics domain, we appeal the science community to see the possibility of considering the proposed 585 GeV weak fermion with a charge of in place of electron and proton.
-
References
- Wilson, Fred L. Fermi's theory of beta decay. American Journal of Physics. 36 (12), 1150–1160,1968. https://doi.org/10.1119/1.1974382.
- Rajasekaran, G. Fermi and the theory of weak interactions. Reson. 19, 18–44, 2014. https://doi.org/10.1007/s12045-014-0005-2.
- Seshavatharam U. V. S., Gunavardhana Naidu T and Lakshminarayana S. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2451, 020003, 2022. https://doi.org/10.1063/5.0095313.
- Seshavatharam U. V. S. and Lakshminarayana S. 4G model of final unification – A brief report. Journal of Physics: Conference Series 2197 p 012029, 2022. https://doi.org/10.1088/1742-6596/2197/1/012029.
- Seshavatharam U.V.S. and Lakshminarayana S. Understanding the Origins of Quark Charges, Quantum of Magnetic Flux, Planck’s Radiation Constant and Celestial Magnetic Moments with the 4G Model of Nuclear Charge. Current Physics, 1, e090524229812, 122-147, 2024. https://doi.org/10.2174/0127723348291145240427074503.
- Seshavatharam U.V.S. and Lakshminarayana S. Exploring condensed matter physics with refined electroweak term of the strong and electroweak mass formula. World Scientific News.193(2) 105-13, 2024.
- Seshavatharam U.V.S. and Lakshminarayana S. Inferring and confirming the rest mass of electron neutrino with neutron lifetime and strong cou-pling constant via 4G model of final unification. World Scientific News 191, 127-156, 2024.
- Seshavatharam U.V.S. and Lakshminarayana. Understanding nuclear stability range with 4G model of nuclear charge. World Scientific News. 177, 118-136, 2023.
- Seshavatharam U. V. S. and Lakshminarayana S., H. K. Cherop and K. M. Khanna, Three Unified Nuclear Binding Energy Formulae. World Sci-entific News, 163, 30-77, 2022.
- Seshavatharam U.V.S. and Lakshminarayana, S., On the Combined Role of Strong and Electroweak Interactions in Understanding Nuclear Bind-ing Energy Scheme. Mapana Journal of Sciences, 20(1), 1-18, 2021. https://doi.org/10.12723/mjs.56.1.
- Seshavatharam U.V.S. and Lakshminarayana S., Strong and Weak Interactions in Ghahramany’s Integrated Nuclear Binding Energy Formula. World Scientific News, 161, 111-129, 2021.
- Seshavatharam U.V.S. and Lakshminarayana S. Is reduced Planck’s constant - an outcome of electroweak gravity? Mapana Journal of Sciences. 19,1,1, 2020. https://doi.org/10.20944/preprints201912.0231.v2.
- Seshavatharam U.V.S. and Lakshminarayana S. A very brief review on strong and electroweak mass formula pertaining to 4G model of final uni-fication. Proceedings of the DAE Symp. on Nucl. Phys. 67,1173, 2023.
- Seshavatharam U.V.S. and Lakshminarayana S. Understanding Super Heavy Mass Numbers and Maximum Binding Energy of Any Mass Num-ber with Revised Strong and Electroweak Mass Formula. Hadronic Journal, 48,1-61, 2025 (In press). Preprints 2024, 2024051928. https://doi.org/10.20944/preprints202405.1928.v1.
- Seshavatharam U.V.S. and Lakshminarayana S. EPR argument and mystery of the reduced Planck’s constant. Algebras, Groups, and Geometries. 36(4), 801-822, 2020.
- Seshavatharam U.V.S. and Lakshminarayana S. Computing Unified Atomic Mass Unit and Avogadro Number with Various Nuclear Binding En-ergy Formulae Coded in Python. Int. J. Chem. Stud.13(1), 24-30, 2025. https://doi.org/10.22271/chemi.2025.v13.i1a.12488.
- Salam A and Strathdee J. A. Supersymmetry and Nonabelian Gauges. Physics Letters B. 51 (4), 353–355,1974. https://doi.org/10.1016/0370-2693(74)90226-3.
- Farrar G.R., Mackeprang R., Milstead D. et al. Limit on the mass of a long-lived or stable gluino. J. High Energ. Phys. 2011, 18, 2011. https://doi.org/10.1007/JHEP02(2011)018.
- Baer H, Barger V, Serce H, Sinha K. P. Higgs and superparticle mass predictions from the landscape. Journal of High Energy Physics. 1803 (3): 002, 2017. https://doi.org/10.1007/JHEP03(2018)002.
- U. V. S. Seshavatharam and S. Lakshminarayana. Super Symmetry in Strong and Weak interactions. Int. J. Mod. Phys. E, 19(2), 263, 2010. https://doi.org/10.1142/S021830131001473X.
- U. V. S. Seshavatharam and S. Lakshminarayana. SUSY and strong nuclear gravity in (120-160) GeV mass range. Hadronic journal, 34(3), 277, 2011.
- U. V. S. Seshavatharam and S. Lakshminarayana. Integral charge SUSY in Strong nuclear gravity. Proceedings of the DAE Symp. on Nucl. Phys. 56, 842, 2011.
- Seshavatharam U. V. S and S. Lakshminarayana. 4G Model of Fractional Charge Strong-Weak Super Symmetry. International Astronomy and Astrophysics Research Journal. 2 (1):31-55, 2020. https://doi.org/10.20944/preprints201912.0391.v1.
- K. Tennakone. Electron, muon, proton, and strong gravity. Phys. Rev. D 10, 1722, 1974. https://doi.org/10.1103/PhysRevD.10.1722.
- Sivaram C and Sinha K.P. Strong gravity, black holes, and hadrons. Physical Review D. 16 (6), 1975-1978, 1977. https://doi.org/10.1103/PhysRevD.16.1975.
- Perng J. J. Strong gravitation and elementary particles. Nuovo Cimento, Lettere, Serie 2, 23(15), 552-554, 1978. https://doi.org/10.1007/BF02770543.
- S. I. Fisenko, M. M. Beilinson and B. G. Umanov. Some notes on the concept of “strong” gravitation and possibilities of its experimental investiga-tion. Physics Letters A, 148(8-9), 405-407, 1990. https://doi.org/10.1016/0375-9601(90)90489-B.
- Raut Usha and Shina K.P. Strong gravity and the fine structure constant. Proceedings of the Indian Academy of Sciences Part A: Physical Scienc-es, 49(2), 352-358, 1983.
- Abdus Salam and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., A8(4), 321-326, 1993. https://doi.org/10.1142/S0217732393000325.
- Recami E. and Tonin-Zanchin V. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure. Found. Phys. Lett., 7(1), 85-92, 1994. https://doi.org/10.1007/BF02056555.
- Sergey G. Fedosin. The radius of the proton in the self-consistent model. Hadronic Journal. 35(4), 349-363, 2012.
- O.F. Akinto and Farida Tahir. Strong Gravity Approach to QCD and General Relativity. arXiv:1606.06963 [physics.gen-ph], 2016.
- Seshavatharam U.V.S and Lakshminarayana S. Strong nuclear gravitational constant and the origin of nuclear planck scale. Progress in Physics, 3, 31-38, 2010.
- Seshavatharam U.V.S and Lakshminarayana S. On the role of strong interaction in understanding nuclear beta stability line and nuclear binding energy. Proceedings of the DAE-BRNS Symp. On Nucl. Phys. 60, 118-119, 2015.
- Seshavatharam U.V.S and Lakshminarayana S, Understanding the constructional features of materialistic atoms in the light of strong nuclear gravitational coupling. Materials Today: 3/10PB, Proceedings 3, 3976-3981, 2016. https://doi.org/10.1016/j.matpr.2016.11.059.
- Seshavatharam U.V.S and Lakshminarayana S, Understanding the basics of final unification with three gravitational constants associated with nuclear, electromagnetic and gravitational interactions. Journal of Nuclear Physics, Material Sciences, Radiation and Applications. 4(1), 1-19, 2017.
- Seshavatharam U.V.S and Lakshminarayana S. To confirm the existence of nuclear gravitational constant, Open Science Journal of Modern Physics. 2(5), 89-102, 2015
- Roberto Onofrio. On weak interactions as short-distance manifestations of gravity. Modern Physics Letters A 28, 1350022, 2013. https://doi.org/10.1142/S0217732313500223.
- Roberto Onofrio. Proton radius puzzle and quantum gravity at the Fermi scale. Europhysics Letters. 104(2), 2002, 2013. https://doi.org/10.1209/0295-5075/104/20002.
- E. A. Pashitskii and V. I. Pentegov. On the possible similarity between electroweak and gravitational interactions. Low Temp. Phys. 46, 805–808, 2020. https://doi.org/10.1063/10.0001545.
- Seshavatharam U.V.S and Lakshminarayana S. To confirm the existence of atomic gravitational constant. Hadronic journal. 34(4), 379, 2011.
- Seshavatharam U.V.S and Lakshminarayana S. Lakshminarayana. To Validate the Role of Electromagnetic and Strong Gravitational Constants via the Strong Elementary Charge. Universal Journal of Physics and Application 9(5), 210-219, 2015. https://doi.org/10.13189/ujpa.2015.090503.
- Sunil Mukhi. String theory: a perspective over the last 25 years. Class. Quantum Grav. 28 153001, 2011. https://doi.org/10.1088/0264-9381/28/15/153001.
- Blumenhagen R., Lüst D., Theisen S. Basic Concepts of String Theory. Theoretical and Mathematical Physics. Springer Heidelberg, Germany, 2013. https://doi.org/10.1007/978-3-642-29497-6.
- Arnab Priya Saha and Aninda Sinha Phys. Field Theory Expansions of String Theory Amplitudes. Rev. Lett. 132, 221601,2024. https://doi.org/10.1103/PhysRevLett.132.221601.
- Christoph schiller. Tests for maximum force and maximum power. Phys. Rev. D 104, 124079,2021. https://doi.org/10.1103/PhysRevD.104.124079.
- Seshavatharam U.V.S. and Lakshminarayana S. On the compactification and reformation of string theory with three large atomic gravitational constants. International Journal of Physical Research, 9(1), 42-48, 2021. https://doi.org/10.14419/ijpr.v9i1.31432.
- Alexandre Deur, Stanley J. Brodsky, Guy F. de Téramond. The QCD running coupling, Progress in Particle and Nuclear Physics, 90, 1-74, 2016. https://doi.org/10.1016/j.ppnp.2016.04.003.
- Andreev, V, Baghdasaryan, A., Begzsuren, K. et al. Determination of the strong coupling constant in next-to-next-to-leading order QCD using H1 jet cross section measurements. Eur. Phys. J. C 77, 791, 2017.
- Quinn Terry and Speake Clive. The Newtonian constant of gravitation—a constant too difficult to measure? An introduction. Phil. Trans. R. Soc. A.372 (2026), 20140253, 2014. https://doi.org/10.1098/rsta.2014.0253.
- S. Schlamminger et al. Measurement of the Gravitational Constant at NIST. American Physical Society meeting, Minneapolis, April 15, 2023.
- David B. Newell and Eite Tiesinga. The International System of Units (SI). NIST Special Publication 330, National Institute of Standards and Technology, 2019
- Peter Mohr, David Newell, Barry Taylor, Eite Tiesinga. CODATA Recommended Values of the Fundamental Physical Constants: 2022. arXiv:2409.03787 [hep-ph]
- Abe et al. (KamLAND-Zen Collaboration). Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen. Phys. Rev. Lett. 130, 051801, 2023.
- Jyotsna Singh and M. Ibrahim Mirza – Theoretical and Experimental Challenges in the Measurement of Neutrino Mass. Advances in High Energy Physics. 2023, Article ID 8897375, 2023. https://doi.org/10.1155/2023/8897375.
- Becker Peter and Bettin Horst. The Avogadro constant: determining the number of atoms in a single-crystal 28Si sphere. Phil. Trans. R. Soc. A.3693925–3935, 2011.
- K. Fujii, E. Massa, H. Bettin, N. Kuramoto and G. Mana. Avogadro constant measurements using enriched 28Si monocrystals. Bureau Interna-tional des Poids et Mesures. Metrologia, 55, L1–L4, 2018. https://doi.org/10.1088/1681-7575/aa9abd.
- Bengt Nordén. The Mole, Avogadro’s Number and Albert Einstein. Molecular Frontiers Journal. 5, 66-78, 2021. https://doi.org/10.1142/S2529732521400010.
- Michalis Siafarikas, Georgios Stylos, Theodoros Chatzimitakos, Konstantinos Georgopoulos, Constantine Kosmidis and Konstantinos T Kotsis. Experimental teaching of the Avogadro constant. Phys. Educ. 58, 065026, 2023. https://doi.org/10.1088/1361-6552/acfb6b.
- Seshavatharam U.V.S. and Lakshminarayana S. Fitting neutron lifetime with 4G model of final unification. Proceedings of 68th DAE symposium on nuclear physics, IIT, Roorkee, India. A65, 173-174, 2024.
- UCNτ Collaboration, F. M. Gonzalez, E. M. Fries, C. Cude-Woods, T. Bailey, M. Blatnik, L. J. Broussard, N. B. Callahan, J. H. Choi, S. M. Clayton, and others, Improved Neutron Lifetime Measurement with UCN τ. Rev. Lett. 127, 162501, 2021
- Anirban, A. Precise measurement of neutron lifetime. Rev. Phys. 4, 9, 2022. https://doi.org/10.1038/s42254-021-00414-2.
- Zhang, J., Zhang, S., Zhang, ZR. et al. MFV approach to robust estimate of neutron lifetime. Eur. Phys. J. C 82, 1106, 2022. https://doi.org/10.1140/epjc/s10052-022-11071-9.
- Tsung-Han Yeh, Keith A. Olive, Brian D. Fields. The Neutron Mean Life and Big Bang Nucleosynthesis.arXiv:2303.04140 [astro-ph.CO], UMN--TH--4210/23, FTPI--MINN--23/04
- C. Slater. Atomic Radii in Crystals. The Journal of Chemical Physics 41 (10), 3199–3204, 1964. https://doi.org/10.1063/1.1725697.
- Bondi. van der Waals Volumes and Radii. The Journal of Physical Chemistry. 68 (3): 441–451, 1964. https://doi.org/10.1021/j100785a001.
- Clementi, D.L. Raimondi, W.P. Reinhardt. Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons. The Journal of Chemical Physics. 47 (4): 1300–1307, 1967. https://doi.org/10.1063/1.1712084.
- Mantina, Manjeera; Chamberlin, Adam C.; Valero, Rosendo; Cramer, Christopher J.; Truhlar, Donald G. Consistent van der Waals Radii for the Whole Main Group. The Journal of Physical Chemistry A. American Chemical Society (ACS). 113 (19): 5806–5812, 2009. https://doi.org/10.1021/jp8111556.
- Martin Rahm, Roald Hoffmann, N. W. Ashcroft. Atomic and Ionic Radii of Elements. 1–96. Chemistry (Weinheim an der Bergstrasse, Germany), 22(41): 14625-14632, 2016. https://doi.org/10.1002/chem.201602949.
- Yadav, P., Tandon, H., Malik, B. et al. A quest for the universal atomic radii. Struct. Chem. 33, 389–394.2022. https://doi.org/10.1007/s11224-021-01850-7.
- A Einstein, B Podolsky and N Rosen. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review. 47, 777, 1935. https://doi.org/10.1103/PhysRev.47.777.
- N. Bohr. Can Quantum Mechanical Description of Physical Reality be Considered Complete? Physical Review, 48, 696,1935. https://doi.org/10.1103/PhysRev.48.696.
- Arvind. The EPR paradox: Einstein scrutinizes quantum mechanics. Reson. 5, 28–36, 2000. https://doi.org/10.1007/BF02837903.
- Fine Arthur. The Einstein-Podolsky-Rosen argument in quantum theory. Stanford Encyclopedia of Philosophy.2008.
- D.N. Basu. Neutron and proton drip lines using the modified Bethe-Weizsacker mass formula. Int.J.Mod.Phys. E13, 747-758, 2004. https://doi.org/10.1142/S0218301304002491.
- Bethe H. A. Thomas-Fermi Theory of Nuclei. Phys. Rev., 167(4), 879-907, 1968. https://doi.org/10.1103/PhysRev.167.879.
- Myers W. D. and Swiatecki W. J. Nuclear Properties According to the Thomas-Fermi Model.LBL-36557 Rev. UC-413, 1995. https://doi.org/10.2172/10124592.
- Cht Mavrodiev S, Deliyergiyev M.A. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula. J. Mod. Phys. E 27: 1850015, 2018. https://doi.org/10.1142/S0218301318500155.
- Gao Z. P, Wang YJ, Lü HL et al., Machine learning the nuclear mass. Sci. Tech. 32, 109, 2021. https://doi.org/10.1007/s41365-021-00956-1.
- X.W. Xia, Y. Lim, P.W. Zhao et al. The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory. Atomic Data and Nuclear Data Tables. 121–122, 1-215, 2018. https://doi.org/10.1016/j.adt.2017.09.001.
- Zelevinsky, Vladimir & Volya, Alexander. Fermi Gas Model. 10.1002/9783527693610.ch7. 2017.
- Hassanabadi, H., Armat, A. & Naderi, L. Relativistic Fermi-Gas Model for Nucleus. Found Phys 44, 1188–1194, 2014. https://doi.org/10.1007/s10701-014-9836-7.
- Gao H, Vanderhaeghen M. The proton charge radius. Rev. Mod. Phys. 2022, 94, 015002 https://doi.org/10.1103/RevModPhys.94.015002.
- Thomas Walcher. The Lamb shift in muonic hydrogen and the electric rms radius of the proton. arXiv:2304.07035 [physics.atom-ph]
- B. A. Brown, C. R. Bronk and P. E. Hodgson. Systematics of nuclear RMS charge radii. J. Phys. G: Nucl. Phys. 10, 1683, 1984 https://doi.org/10.1088/0305-4616/10/12/008.
- Dongdong Ni, Zhongzhou Ren, Tiekuang Dong and Yibin Qian. Nuclear charge radii of heavy and superheavy nuclei from the experimental α-decay energies and half-lives. Phys. Rev. C 87, 024310,2013
- Tuncay Bayram, Serkan Akkoyun, S. Okan Kara, Alper Sinan. New Parameters for Nuclear Charge Radius Formulas. Acta Phys. Polon. B 44, 8, 1791-1799, 2013. https://doi.org/10.5506/APhysPolB.44.1791.
- Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: An update. Atomic Data and Nuclear Data Tables, 99(1), 69-95, 2013. https://doi.org/10.1016/j.adt.2011.12.006.
- Tao Li, Yani Luo, Ning Wang. Compilation of recent nuclear ground state charge radius measurements and tests for models. Atomic Data and Nuclear Data Tables. 140, 101440, 2021. https://doi.org/10.1016/j.adt.2021.101440.
- Adamu A., Ngadda Y. H., Determination of Nuclear Potential Radii and Its Parameter from Finite – Size Nuclear Model, International Journal of Theoretical and Mathematical Physics, 7(1), 9-13, 2017.
- Ying‑Yu Cao, Jian‑You Guo, Bo Zhou. Predictions of nuclear charge radii based on the convolutional neural network. Nuclear Science and Tech-niques, 34:152, 2023. https://doi.org/10.1007/s41365-023-01308-x.
- Guang-Sheng Li, Cheng Xu, Man Bao. Predictions of nuclear charge radii. Chinese Physics C, 47(8), 084104, 2023. https://doi.org/10.1088/1674-1137/acdb54.
- Adamu, A., Ngadda, Y. H., & Hassan, M. The Direct Nuclear Charge Radii Measurement from Potential Wavefunction. Nigerian Journal of Phys-ics, 32(1), 67–75, 2023.
- Fixler, J & Foster, G & McGuirk, Jeffrey & Kasevich, M. Atom Interferometer Measurement of the Newtonian Constant of Gravity. Science (New York, N.Y.). 315, 74-7, 2007. https://doi.org/10.1126/science.1135459.
- G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Precision Measurement of the Newtonian Gravitational Constant Using Cold At-oms. NATURE, 510, 518, 2014. https://doi.org/10.1038/nature13433.
- Guglielmo M Tino. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Technol. 6 024014,2021. https://doi.org/10.1088/2058-9565/abd83e.
- Brack, T., Zybach, B., Balabdaoui, F. et al. Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nat. Phys. 18, 952–957, 2022. https://doi.org/10.1038/s41567-022-01642-8.
- Tobias, B., Jonas, F., Bernhard, Z. et al. Dynamic gravitational excitation of structural resonances in the hertz regime using two rotating bars. Commun Phys. 6, 270. 2023. https://doi.org/10.1038/s42005-023-01389-5.
- D d’Enterria et al. The strong coupling constant: state of the art and the decade ahead. J. Phys. G: Nucl. Part. Phys. 51 090501, 2024.
- A. T. Yue et al. Improved Determination of the Neutron Lifetime. Phys. Rev. Lett. 111, 222501, 2013. https://doi.org/10.1103/PhysRevLett.111.222501.
- N. Sumi et al. Precise Neutron Lifetime Measurement Using Pulsed Neutron Beams at J-PARC.JPS Conf. Proc. 33, 011056, 2021. https://doi.org/10.7566/JPSCP.33.011056.
- Sarira Sahu et al, Deciphering the 18 TeV Photons from GRB 221009A.ApJL 942 L30,2023. https://doi.org/10.3847/2041-8213/acac2f.
- Giorgio Galanti, Lara Nava, Marco Roncadelli, Fabrizio Tavecchio, and Giacomo Bonnoli. Multi-TeV photons from GRB 221009A: uncertainty of optical depth considered. Phys. Rev. Lett. 131, 251001,2023. https://doi.org/10.1103/PhysRevLett.131.251001.
- Chuyuan Yang, Houdun Zeng, Biwen Bao and Li Zhang. Possible hadronic origin of TeV photon emission from SNR G106.3+2.7. A&A 658, A60, 2022. https://doi.org/10.1051/0004-6361/202141850.
- Jirong Mao, Jiancheng Wang, Jitter radiation: towards TeV-photons of gamma-ray bursts, Monthly Notices of the Royal Astronomical Society, 505(3),4608–4615, 2021. https://doi.org/10.1093/mnras/stab1644.
- M. Amenomori1 et al. (Tibet AS Collaboration). First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source. Phys. Rev. Lett. 123, 051101, 2019.
-
Downloads
-
How to Cite
Seshavatharam, U. .V.S, Gunavardhana Naidu, T. ., & Lakshminarayana, S. . (2025). Nuclear evidences for confirming the physical existence of 585 GeV weak fermion and galactic observations of TeV radiation. International Journal of Advanced Astronomy, 13(1), 1-17. https://doi.org/10.14419/yqrd2j69Received date: January 22, 2025
Accepted date: February 21, 2025
Published date: March 8, 2025