On the combined role of the astrophysical force limit and Avogadro number in final unification

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    Magnitude of the unified force can be assumed to be equal to the classical or astrophysical force limit . Strength of any interaction can be defined as the ratio of the operating force magnitude and the magnitude of . Let the gravitational interaction taking place at black holes be called as ‘Schwarzschild interaction’. If strength of Schwarzschild interaction is unity, then weak interaction strength seems to be times less than the Schwarzschild interaction and strong interaction strength seems to be  times less than the Schwarzschild interaction. Based on these concepts and considering the Avogadro number as an absolute and discrete number, basics of final unification can be understood.

  • Keywords

    Classical Force Limit; Avogadro number; Schwarzschild’s Interaction; Final Unification.

  • References

    1. P. A. M. Dirac, The cosmological constants. Nature, 139, 323, (1937). http://dx.doi.org/10.1038/139323a0.
    2. Witten, Edward. Search for a realistic Kaluza-Klein theory. Nuclear Physics B 186 (3): 412- 428. 1981 http://dx.doi.org/10.1016/0550-3213 (81)90021-3.
    3. David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. 2005, p 12.
    4. Abdus Salam. Einstein's Last Dream: The Space -Time Unification of Fundamental Forces, Physics News, 12(2):36, June 1981.
    5. Salam A. and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., 1993, v. A8 (4), 321-326. http://dx.doi.org/10.1142/S0217732393000325.
    6. Recami E. Elementary Particles as Micro-Universes, and "Strong Black-holes": A Bi-Scale Approach to Gravita-tional and Strong Interactions. Preprint NSF-ITP-02-94. Posted in the arXives as the e-print physics/0505149, and references therein.
    7. Hawking S.W. A Brief History of Time. Bantam Dell Publishing Group. 1988
    8. Dine, Michael. Supersymmetry and String Theory: Beyond the Standard Model. Cambridge University Press. (2007) http://dx.doi.org/10.1017/CBO9780511618482.
    9. Roberto Onofrio. On Weak Interactions as Short-Distance Manifestations of Gravity. Modern Physics Letters A, Vol. 28, No. 7 (2013) 1350022 http://dx.doi.org/10.1142/S0217732313500223.
    10. U. V. S. Seshavatharam and S. Lakshminarayana. On the Scale Independent Evolving Quantum Black Hole Cosmology. Prespace time journal, Vol 5, issue 9, pp924-942. (2014).
    11. U. V. S. Seshavatharam and S. Lakshminarayana. Nu-cleus in Strong nuclear gravity. Proceedings of the DAE Symp. On Nucl. Phys. 56: 302, 2011.
    12. U. V. S. Seshavatharam and S. Lakshminarayana, Role of Avogadro number in grand unification. Hadronic Journal. Vol-33, No 5, 2010 October. p 513.
    13. U. V. S. Seshavatharam and S. Lakshminarayana, To confirm the existence of atomic gravitational constant. Hadronic journal, Vol-34, No 4, 2011 Aug. p379.
    14. U. V. S. Seshavatharam and S. Lakshminarayana. Logic behind the Squared Avogadro number and SUSY. International Journal of Applied and Natural Sciences. Vol. 2, Issue 2, 23-40 (2013).
    15. U. V. S. Seshavatharam and S. Lakshminarayana. Integral charge SUSY in Strong nuclear gravity. Pro-ceedings of the DAE Symp. On Nucl. Phys. 56 (2011) p.842.
    16. U. V. S. Seshavatharam and S. Lakshminarayana. Super Symmetry in Strong and Weak interactions. Int. J. Mod. Phys. E, Vol.19, No.2, (2010), p.263-280. http://dx.doi.org/10.1142/S021830131001473X.
    17. U. V. S. Seshavatharam and S. Lakshminarayana. SUSY and strong nuclear gravity in (120-160) GeV mass range. Hadronic journal, Vol-34, No 3, 2011 June, p.277-300.
    18. U. V. S. Seshavatharam and S. Lakshminarayana. New concepts and semi empirical fittings in understanding SUSY and the four cosmological interactions. Prespace time journal, Vol 4, issue 11, pp1027- 1038.
    19. Roger Penrose. Chandrasekhar, Black Holes, and Sin-gularities. J. Astrophys. Astr. (1996) 17, 213-231 http://dx.doi.org/10.1007/BF02702305.
    20. Subrahmanyan Chandrasekhar. On Stars, Their Evolu-tion and Their Stability',Nobel Prize lecture, December 8, 1983.
    21. G.J. Stoney, On the Physical Units of Nature. Phil.Mag. 11 (1881) 381-390. http://dx.doi.org/10.1080/14786448108627031. N. Bohr. On the Constitution of Atoms and Molecules. (Part-1) Philos. Mag. 26, 1913, p 1. http://dx.doi.org/10.1080/14786441308634955.
    22. N. Bohr. On the Constitution of Atoms and Molecules. Systems containing only a Single Nucleus. (Part-2) Philos. Mag. 26, 476, 1913 http://dx.doi.org/10.1080/14786441308634993.
    23. Geiger H and Marsden E. On a diffuse reaction of the particles. Proc. Roy. Soc., Ser. An 82: 495-500, 1909. http://dx.doi.org/10.1098/rspa.1909.0054.
    24. Michael O. Distler et al. The RMS Charge Radius of the Proton and Zemach Moments. Phys. Lett.B. 696: 343-347, 2011 http://dx.doi.org/10.1016/j.physletb.2010.12.067.
    25. Roberto Onofrio. Proton radius puzzle and quantum gravity at the Fermi scale. EPL, 104 (2013) 20002 http://dx.doi.org/10.1209/0295-5075/104/20002.
    26. J. Mohr, B.N. Taylor, and D.B. Newell in arXiv: 1203.5425 and Rev. Mod. Phys. (to be published). http://pdg.lbl.gov/2013/reviews/rpp2012-rev-phys-constants.pdf.
    27. K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) http://dx.doi.org/10.1088/1674-1137/38/9/090001.
    28. Chowdhury, P.R. et al. Modified Bethe-
    29. Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 (2005) p.1605-1618. http://dx.doi.org/10.1142/S021773230501666X.
    30. W.D. Myers and W.J. Swiatecki. Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. LBL-36803.1994.
    31. G. Audi and A.H. Wapstra. The 1993 atomic mass evo-lution. (I) Atomic mass table. Nuclear physics, A 5 65, p1-65 (1993). http://dx.doi.org/10.1016/0375-9474 (93)90024-R.
    32. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino1. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518-521. (2014) http://dx.doi.org/10.1038/nature13433.
    33. Terry Quinn, Harold Parks, Clive Speake and Richard Davis. An uncertain big G. Phys.Rev. Lett. 112.068103. (2013)
    34. J. B. Fixler; G. T. Foster; J. M. McGuirk; M. A. Kase-vich. Atom Interferometer Measurement of the Newto-nian Constant of Gravity, Science 315 (5808): 74-77, (2007). http://dx.doi.org/10.1126/science.1135459.




Article ID: 3751
DOI: 10.14419/ijaa.v2i2.3751

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.