On fixing the magnitudes of gravitational constant and strong coupling constant

  • Authors

    • Satya Seshavatharam UV I-SERVE, Hyderabad, AP, India.Sr. Engineer, QA-DIP, Lanco Industries Ltd, Tirupati, AP, India.
    • Lakshminarayana S Andhra university, India
    2015-02-21
    https://doi.org/10.14419/ijaa.v3i1.3788
  • Gravitational constant, Schwarzschild’s interaction, Astrophysical force limit, Avogadro number, Particle rest masses, Strong interaction, nuclear binding energy, and Electron’s (n2) quantum states.
  • Abstract

    In the earlier published papers the authors suggested that, “Magnitude of the unified force can be assumed to be equal to the classical or astrophysical force limit . Strength of any interaction can be defined as the ratio of the operating force magnitude and the magnitude of . If strength of the Schwarzschild interaction is assumed to be unity, then weak interaction strength seems to be ‘squared Avogadro number’ times less than the Schwarzschild interaction. The characteristic atomic force can be represented by â€. Thinking in this way, atomic gravitational constant can be expressed as  With current atomic physical constants and with the assumed two new grand unified back ground numbers analytically - value of  can be fixed for 10 digits and can be verified. Inverse of the strong coupling constant can be considered as the ‘natural logarithm of square root of ratio of gravitational and electromagnetic force ratio of down quark mass where the operating gravitational constant is squared Avogadro number times the gravitational constant’. Finally an attempt is made to fit and understand the mystery of Up and Down quarks, nuclear stability, and nuclear binding energy. For medium and heavy atomic nuclides, at the stable mass number, nuclear binding energy seems to be equal to the sum of rest energy of  up quarks and  down quarks.

  • References

    1. [1] P. A. M. Dirac, The cosmological constants. Nature, 139, 323, (1937). http://dx.doi.org/10.1038/139323a0.

      [2] Witten, Edward. Search for a realistic Kaluza-Klein theory. Nuclear Physics B 186 (3): 412- 428. (1981) http://dx.doi.org/10.1016/0550-3213(81)90021-3.

      [3] David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. p 12. (2005).

      [4] Abdus Salam. Einstein's Last Dream: The Space -Time Unification of Fundamental Forces, Physics News, 12(2):36, (1981).

      [5] Salam A. and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., v. A8 (4), 321-326. (1993) http://dx.doi.org/10.1142/S0217732393000325.

      [6] Recami E. Elementary Particles as Micro-Universes, and "Strong Black-holes": A Bi-Scale Approach to Gravitational and Strong Interactions. Preprint NSF-ITP-02-94. Posted in the arXives as the e-print physics/0505149, and references therein.

      [7] Dine, Michael. Supersymmetry and String Theory: Beyond the Standard Model. Cambridge University Press. (2007) http://dx.doi.org/10.1017/CBO9780511618482.

      [8] Roberto Onofrio. On Weak Interactions as Short-Distance Manifestations of Gravity. Modern Physics Letters A, Vol. 28, No. 7 (2013) 1350022 http://dx.doi.org/10.1142/S0217732313500223.

      [9] U. V. S. Seshavatharam and S. Lakshminarayana. Two Background Unified Numbers & Their Possible Role. Prespace time journal, Vol 5, issue 13, pp1338- 1353. (November 2014).

      [10] U. V. S. Seshavatharam and S. Lakshminarayana. On the plausibility of final unification with Avogadro number. Prespace time journal, Vol 5, issue 10, pp1028-1041. (2014)

      [11] U. V. S. Seshavatharam and S. Lakshminarayana. Nu-cleus in Strong nuclear gravity. Proceedings of the DAE Symp. On Nucl. Phys. 56: 302, 2011.

      [12] U. V. S. Seshavatharam and S. Lakshminarayana, Role of Avogadro number in grand unification. Hadronic Journal. Vol-33, No 5, (2010) October. p 513.

      [13] U. V. S. Seshavatharam and S. Lakshminarayana, to confirm the existence of atomic gravitational constant. Hadronic journal, Vol-34, No 4, p379 (2011).

      [14] U. V. S. Seshavatharam and S. Lakshminarayana. Logic behind the Squared Avogadro number and SUSY. International Journal of Applied and Natural Sciences. Vol. 2, Issue 2, 23-40 (2013).

      [15] U. V. S. Seshavatharam and S. Lakshminarayana. Integral charge SUSY in Strong nuclear gravity. Pro-ceedings of the DAE Symp. On Nucl. Phys. 56 (2011) p.842.

      [16] U. V. S. Seshavatharam and S. Lakshminarayana. Super Symmetry in Strong and Weak interactions. Int. J. Mod. Phys. E, Vol.19, No.2, (2010), p.263-280. http://dx.doi.org/10.1142/S021830131001473X.

      [17] U. V. S. Seshavatharam and S. Lakshminarayana. SUSY and strong nuclear gravity in (120-160) GeV mass range. Hadronic journal, Vol-34, No 3, (2011) June, p.277-300.

      [18] U. V. S. Seshavatharam and S. Lakshminarayana. New concepts and semi empirical fittings in understanding SUSY and the four cosmological interactions. Prespace time journal, Vol 4, issue 11, (December 2013), pp1027- 1038.

      [19] Roger Penrose. Chandrasekhar, Black Holes, and Sin-gularities. J. Astrophys. Astr. (1996) 17, 213-231 http://dx.doi.org/10.1007/BF02702305.

      [20] Subrahmanyan Chandrasekhar. On Stars, Their Evolu-tion and Their Stability',Nobel Prize lecture, December 8, 1983.

      [21] G.J. Stoney, On the Physical Units of Nature. Phil.Mag. 11 (1881) 381-390. http://dx.doi.org/10.1080/14786448108627031.

      [22] P.J. Mohr, B.N. Taylor, and D.B. Newell. CODATA Recommended Values of the Fundamental Physical Con-stants: 2010" by in Rev. Mod. Phys. 84, 1527 (2012) http://pdg.lbl.gov/2014/reviews/rpp2014-rev-phys-constants.pdf.

      [23] B. Andreas et al. An accurate determination of the Avo-gadro constant by counting the atoms in a 28Si crystal. Phys. Rev. Let. 106(3):030801 (2011) http://dx.doi.org/10.1103/PhysRevLett.106.030801.

      [24] B P Leonard. On the role of the Avogadro constant in redefining SI units for mass and amount of substance. Metrologia 44, 82-86 (2007) http://dx.doi.org/10.1088/0026-1394/44/1/012.

      [25] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) http://dx.doi.org/10.1088/1674-1137/38/9/090001.

      [26] Geiger H and Marsden E. On a diffuse reaction of the particles. Proc. Roy. Soc., Ser. An 82: 495-500, (1909). http://dx.doi.org/10.1098/rspa.1909.0054.

      [27] Michael O. Distler, Jan C. Bernauer, Thomas Walche. The RMS Charge Radius of the Proton and Zemach Moments. Phys. Lett.B. 696: 343-347, (2011). http://dx.doi.org/10.1016/j.physletb.2010.12.067.

      [28] Roberto Onofrio. Proton radius puzzle and quantum gravity at the Fermi scale. EPL, 104 (2013) 20002. http://dx.doi.org/10.1209/0295-5075/104/20002.

      [29] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino1. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518-521. (2014) http://dx.doi.org/10.1038/nature13433.

      [30] L.L. Williams. Analytical Expressions for the Gravita-tional Constant. (August 2009) http://www.konfluence.org/CalculatingG.pdf.

      [31] George T Gillies. The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 60 151, (1997) http://dx.doi.org/10.1088/0034-4885/60/2/001.

      [32] J Stuhler, M Fattori, T Petelski and G M Tino. MAGIA using atom interferometry to determine the Newtonian gravitational constant. J. Opt. B: Quantum Semiclass. Opt. 5 (2003) S75–S81. http://dx.doi.org/10.1088/1464-4266/5/2/361.

      [33] Terry Quinn, Harold Parks, Clive Speake and Richard Davis. An uncertain big G. Phys.Rev. Lett. 112.068103. (2013)

      [34] J. B. Fixler; G. T. Foster; J. M. McGuirk; M. A. Kase-vich. Atom Interferometer Measurement of the Newto-nian Constant of Gravity, Science 315 (5808): 74-77, (2007). http://dx.doi.org/10.1126/science.1135459.

      [35] Brandenburg, J.E. Unification of Gravity and Electro-magnetism in the Plasma Universe. IEEE Transactions on Plasma Science, v20, n6, p944. (1992).

      [36] Jun Luo and Zhong-Kun Hu. Status of measurement of the Newtonian gravitational constant G. Class. Quantum Grav. 17 (2000) 2351–2363 http://dx.doi.org/10.1088/0264-9381/17/12/307.

      [37] St. Schlamminger E.Holzschuh, W. Kundig. Deter-mination of the Gravitational Constant Using a Beam Balance. (July 2002) http://www.schlammi.com/pdf/prl02.pdf.

      [38] A.V. Manohar and C.T. Sachrajdahttp Quark masses. Updated Jan 2014. Pages 1-20. (pdg.lbl.gov/2014/reviews/rpp2014-rev-quark-masses.pdf).

      [39] Halzen, F.; Martin, A. D. Quarks and Leptons: An In-troductory Course in Modern Particle Physics. John Wiley & Sons. (1984).

      [40] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli and G. M. Tino1. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518-521. (2014) http://dx.doi.org/10.1038/nature13433.

      [41] Chowdhury, P.R. et al. Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 p.1605-1618. (2005) http://dx.doi.org/10.1142/S021773230501666X.

      [42] W.D. Myers and W.J. Swiatecki. Table of Nuclear Masses according to the 1994 Thomas-Fermi Model. LBL-36803. (1994).

      [43] G. Audi and A.H. Wapstra. The 1993 atomic mass evo-lution. (I) Atomic mass table. Nuclear physics, A 5 65, p1-65 (1993). http://dx.doi.org/10.1016/0375-9474(93)90024-R.

      [44] N. Bohr. On the Constitution of Atoms and Molecules. (Part-1) Philos. Mag. 26, 1913, p 1. http://dx.doi.org/10.1080/14786441308634955.

      [45] N. Bohr. On the Constitution of Atoms and Molecules. Systems containing only a Single Nucleus. (Part-2) Philos. Mag. 26, 476, (1913) http://dx.doi.org/10.1080/14786441308634993.

      [46] Celso L. Ladera, Eduardo Aloma, Pilar Leon. The Virial Theorem and its applications in the teaching of Modern Physics. Lat. Am. J. Phys. Educ. Vol. 4, No. 2, May 2010.

  • Downloads

  • How to Cite

    UV, S. S., & S, L. (2015). On fixing the magnitudes of gravitational constant and strong coupling constant. International Journal of Advanced Astronomy, 3(1), 17-23. https://doi.org/10.14419/ijaa.v3i1.3788

    Received date: 2014-11-01

    Accepted date: 2014-12-02

    Published date: 2015-02-21