Corrected Hawking temperature of acoustic rotating black hole

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    In this paper, the corrected Hawking temperature of (2+1) dimensional acoustic rotating black hole has been calculated by using tunneling method. For this purpose, the r-t sector of the metric is isolated from the angular part by taking a transformation of the time and the azimuthal angle co-ordinates in the exterior region of the event horizon. The massless particle of this black hole obeys the Klein- Gordon equation of motion.


  • Keywords


    Black Hole; Classical Theories of Gravity; Hawking Temperature; Hawking Radiation; Tunneling Method.

  • References


      [1] Bekenstein, J. D., (1973).Black holes and entropy. Physical Review D 7, P 2333-2346. http://dx.doi.org/10.1103/physrevd.7.2333.

      [2] Hawking, S. W., (1975).Particle creation by black holes. Communications in Mathematical Physics 43, P 199- 200. http://dx.doi.org/10.1007/BF02345020.

      [3] Gibbons, G. W., Hawking. S. W., (1977a).Cosmological Event Horizons, Thermodynamics and Particle Creation. Physical Review D 15, P 2738-2751. http://dx.doi.org/10.1103/physrevd.15.2738.

      [4] Gibbons, G. W., Hawking. S. W., (1977b).Action Integrals and partition functions in Quantum Gravity. Physical Review D 15, P 2752-2756. http://dx.doi.org/10.1103/physrevd.15.2752.

      [5] Kraus, P., Wilczek, F., (1995a). Self-Interaction correction to black hole radiation. Nuclear Physics B 433, P 403-420. http://dx.doi.org/10.1016/0550-3213(94)00411-7.

      [6] Kraus, P., Wilczek, F., (1995b). Effect of self-interaction on charged black hole radiance. Nuclear Physics B 437, P 231-242. http://dx.doi.org/10.1016/0550-3213(94)00588-6.

      [7] Srinivasan, K., Padmanavan, T., (1999). Particle production and complex path analysis. Physical Review D 60, P 024007-024032. http://dx.doi.org/10.1103/PhysRevD.60.024007.

      [8] Parikh, M. K., Wilczek, F., (2000). Hawking radiation as tunneling. Physical Review Letters 85, p 5042-5045. http://dx.doi.org/10.1103/physrevlett.85.5042.

      [9] Shankaranarayanan, S., Srinivasan, K., Padmanabhan, T., (2001). Method of complex paths and general covariance of hawking radiation. Modern Physics letters A 16, P 571-578. http://dx.doi.org/10.1142/S0217732301003632.

      [10] Shankaranarayanan, S., Padmanabhan, T., Srinivasan, T., (2002). Hawking radiation in different coordinate settings: complex path approach. Classical and Quantum Gravity 19, P 2671-2688. [gr-qc/0010042] [SPIRES] http://dx.doi.org/10.1088/0264-9381/19/10/310.

      [11] Kerner,R., Mann,R. B., (2006).Tunneling, Temperature and Tuab-NUT black holes.PhysicalReviewD 73, P 104010-104031.

      [12] Banerjee R., Modak, S. K., (2009a). Quantum tunneling, Black body spectrum and non- logarithmic entropy corrected for lovelock black holes. Journal of High Energy Physics 11, 073.

      [13] Mirza, B., Sherkatghanad,Z., (2011). Corrected entropy of the rotating black hole solution of the new massive gravity using the Tunneling method and Cardy formula. Physical ReviewD 83, P 104001-104006. http://dx.doi.org/10.1103/physrevd.83.104001.

      [14] Criscienzo, R. D., Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G., (2007). On the Hawking radiation as tunneling for a class of dynamical black holes. Physics Letter B 657, P 107-111. http://dx.doi.org/10.1016/j.physletb.2007.10.005.

      [15] Jiang, K. X., Feng, T., Peng, D. T., (2009).Hawking radiation of apparent horizon in a FRW universe as tunneling beyond semiclassical approximation. International Journal of Theoretical Physics 48, P 2112-2121. http://dx.doi.org/10.1007/s10773-009-9988-y.

      [16] Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S. (2005). Hawking radiation as tunneling for extremal and rotating black hole. Journal of High Energy Physics 05, 014. http://dx.doi.org/10.1088/1126-6708/2005/05/014.

      [17] Bo, L., Wen-Biao, L., (2010). Negative temperature of inner horizon and Planck absolute entropy of a Kerr-Newman black hole. Communication Theoretical Physics 53, P 83-86. http://dx.doi.org/10.1088/0253-6102/53/1/19.

      [18] Misra, R., Mahanta, C. R., (2013a). Corrected Hawking Temperature of Warped AdS3 rotating black hole by using Tunneling method. Astrophysics and Space science, Vol. No. 344 Issue I P 63-67.

      [19] Mahanta, C. R., Misra, R., (2013b).Corrected Hawking Temperature of (2+1) dimensional BTZ (Banados-Teitelboim-Zanelli) rotating black holeby using Tunneling method.Astrophysics and Space science, Vol. No. 348 Issue 2 437-440.

      [20] Arzano, M., Medved, A. J. M., Vagenas, E. C., (2005). Hawking radiation as tunneling through the quantum horizon. Journal of High Energy Physics 09, 037. http://dx.doi.org/10.1088/1126-6708/2005/09/037.

      [21] Medved, A. J. M., Vagenas, E. C., (2005). On hawking radiation as tunneling with back reaction. Modern Physics Letters A 20, P 2449-2454. http://dx.doi.org/10.1142/s021773230501861x.

      [22] Akhmedov, E. T., Akhmedova, V., Singleton, D., (2006). Hawking temperature in the tunneling picture. Physics LetterB 642, P 124-128. http://dx.doi.org/10.1016/j.physletb.2006.09.028.

      [23] Modak, S. K., (2009). Corrected entropy of BTZblack hole in tunneling approach. Physics LetterB 671, P 167-173. http://dx.doi.org/10.1016/j.physletb.2008.11.043.

      [24] Banerjee, R., Modak, S. K., 2009b. Exact differential and corrected area law for stationary black holes in tunneling method. Journal of High Energy Physics 05, 063.

      [25] Unruh, W. G., 1981. Experimental Black-Hole Evaporation? Physical Review Letters 46, P 1351-1353. http://dx.doi.org/10.1103/PhysRevLett.46.1351.

      [26] Unruh, W. G., 1995. Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Physical Review D 51, P 2827-2838. http://dx.doi.org/10.1103/physrevd.51.2827.

      [27] Visser, M., (1998). Acoustic black holes: Horizons, ergospheres, and hawking radiation. Classicaland Quantum Gravity 15, P 1767-1791. http://dx.doi.org/10.1088/0264-9381/15/6/024.

      [28] Visser, M., (1993). Acoustic propagation in fluids: An unexpected example of Lorentzian geometry. [arxiv gr-qc/9311028]

      [29] Visser, M., 1999. Acoustic black holes. [arxiv gr-qc/9311028]

      [30] Novello, M., Visser, M., Volovik, G., (2002). Artificial black holes. River Edge, USA: world scientific 391.

      [31] Barcelo, C., Leberati, S., Visser, M., (2005). Analogue Gravity. Living reviews in relativity 8, 12. http://dx.doi.org/10.12942/lrr-2005-12.

      [32] Berti, E., Cardoso, V., Lemos, J. P. S., (2004).Quasinormal modes and classical wave propagation in analogue black holes. Physical Review D 70, P 124006-124024.http://dx.doi.org/10.1103/physrevd.70.124006.

      [33] Lepe, S., Saavedra, J., (2005).Quasinormal modes, superradiance and area spectrum for (2+1) acoustic black holes. Physics Letter B 617 P 174-181 [arviv:gr-qc/0410074]http://dx.doi.org/10.1016/j.physletb.2005.05.021.

      [34] Berti, E., (2005). Black Hole in a bathtub. Journal of Physics: conference series 8, P 101-105.http://dx.doi.org/10.1088/1742-6596/8/1/013.

      [35] Kim, W., Park, Y. J., Son, E. J., (2006). Statistical entropy and superrdiance in (2+1)-dimensional acoustic black holes. Journal of the Korean Physical society, Vol. 49, P15-20.

      [36] Bercelo, C., Liberati, S., Sonego, S., Visser, M., (2006). Quasi-particle creation by analogue black hole. Classical and Quantum Gravity 23, P 5341-5366. http://dx.doi.org/10.1088/0264-9381/23/17/014.

      [37] Carusotto, L., Fagnocchi, S., Recati, A., Balbinot, R., Fabbri, A., (2008).Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New Journal of Physics 10, P 103001 103015. http://dx.doi.org/10.1088/1367-2630/10/10/103001.

      [38] Kim, W., Son, E.J., Yoon, Myungseok., (2008). Thermodynamics of (2+1) dimensional acoustic black hole based on the generalized uncertainty principle. [arxiv: 0801. 1439]

      [39] Lombardo, F. C., Turiaci, G. J., (2012).Decoherence and loss of entanglement in acoustic black holes. Physical Review Letters108, P 261301-261305. http://dx.doi.org/10.1103/PhysRevLett.108.261301.

      [40] Lemos, J. P. S., (2013). Rotating analogue black holes: Quasinormal modes and tails, superresonance, and sonic bombs and plants in the draining bathtub acoustic hole. [arxiv: 1312.7176]

      [41] Basak, S., Majumdar, P., (2003).Superresonance from a rotating acoustic black hole. Classical and Quantum Gravity 20, P 3907-3914. http://dx.doi.org/10.1088/0264-9381/20/18/304.

      [42] Banados, M., Teitelboim, C., Zanelli, J., (1992).Black hole in three-dimensional spacetime. Physical Review Letters 69, P 1849-1851. http://dx.doi.org/10.1103/physrevlett.69.1849.


 

View

Download

Article ID: 4725
 
DOI: 10.14419/ijaa.v3i2.4725




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.